Please use this identifier to cite or link to this item: http://dspace.sctimst.ac.in/jspui/handle/123456789/10011
Title: Longitudinal Evaluation of Structural Changes in Frontotemporal Dementia Using Artificial Neural Networks
Authors: Kumari, RS
Varghese, T
Kesavadas, C
Singh, NA
Mathuranath, PS
Keywords: Computer Science
Issue Date: 2014
Publisher: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2013
Citation: 247 ,;165-172
Abstract: Automatic Segmentation of Magnetic Resonance (MR) Images plays an important role in medical image processing. Segmentation is the process of extracting the brain tissue components such as grey matter (GM), white matter (WM) and cerebrospinal fluids (CSF). The volumetric analysis of the segmented tissues helps in determining the amount of GM loss in specific disease pathology. Among the various segmentation techniques, fuzzy c means (FCM) is the most widely used one. The performance of traditional FCM is considerably reduces in noisy MR images. However, in the clinical analysis accurate segmentation of MR image is very important and crucial for the early diagnosis and prognosis. This paper put forward an Artificial Neural Network based segmentation to map the longitudinal structural changes overtime in Frontotemporal dementia (FTD) subjects that could be a better cue to impending behavioural changes. Our proposed approach has achieved an average classification accuracy of 96.7%, 96.4% and 97.96% for GM, WM and CSF respectively
URI: 10.1007/978-3-319-02931-3_20
http://dspace.sctimst.ac.in/jspui/handle/123456789/10011
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.