Please use this identifier to cite or link to this item: http://dspace.sctimst.ac.in/jspui/handle/123456789/10467
Title: Structure activity relationship of plumbagin in BRCA1 related cancer cells
Authors: Thasni, KA
Ratheeshkumar, T
Rojini, G
Sivakumar, KC
Nair, RS
Srinivas, G
Banerji, A
Somasundaram, V
Srinivas, P
Keywords: Biochemistry & Molecular Biology; Oncology
Issue Date: 2013
Publisher: MOLECULAR CARCINOGENESIS
Citation: 52 ,5;392-403
Abstract: It has been shown earlier that plumbagin, a naturally occurring naphthaquinone has specific anticancer activity in BRCA1 blocked ovarian cancer cells. Plumbagin can induce estrogen dependent cell signaling and apoptosis in BRCA1 blocked ovarian cancer cells. Being a reactive oxygen species (ROS) generator and apoptosis inducing agent, plumbagin has immense potential as a promising anticancer agent. In this study we analyzed whether there would be increased anticancer activity if the positions of the functional groups on plumbagin were altered and further to analyze the detailed molecular mechanism of action of the lead molecule. Methods like MTT assay, apoptosis analysis by flow cytometry, assessment of mitochondrial membrane potential-m, suppression subtractive hybridization, microarray, molecular docking and estrogen receptorDNA binding activity by electrophoresis mobility shift assay (EMSA) were adopted for assessing the anticancer activity. Consequently we found that, plumbagin was the most potent anticancer agent when compared to structurally related compounds. The anti-cancer activities were in the order plumbagin>1,4-naphthaquinone>juglone>lawsone>menadione. Molecular docking studies showed that plumbagin could be well docked in the receptor ligand complex of TRAILDR5 complexes to activate the extrinsic pathway of apoptosis. Since the antiproliferative activity of plumbagin could be reduced by inhibiting ER, we speculated that plumbagin interferes with the binding of ER to ERE and we confirmed this by EMSA. This study clearly indicates that plumbagin can induce multiple pathways of apoptosis and cell cycle arrest in BRCA1 blocked cells compared to unblocked cells. (c) 2012 Wiley Periodicals, Inc.
URI: 10.1002/mc.21877
http://dspace.sctimst.ac.in/jspui/handle/123456789/10467
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.