Please use this identifier to cite or link to this item: http://dspace.sctimst.ac.in/jspui/handle/123456789/349
Title: Development of silastic polyurethane (Angioflex) materials with antibacterial agent
Authors: Rathinam, K
Hari, PR
Sharma, CP
Shanmugam, J
Keywords: Biomaterials
Issue Date: 1996
Publisher: JOURNAL OF BIOMATERIALS APPLICATIONS
Citation: JOURNAL OF BIOMATERIALS APPLICATIONS. 10; 3; 210-216
Abstract: Bioimplants incorporated with antimicrobial agents are needed to control Foreign Body Associated Infection (FBAI) in clinical settings. Attempts are made here to develop five different types of polyurethane (Angioflex), viz., (1) bare polymer, (2) bare polymer glow discharged, (3) bare polymer coated with chlorhexidine, (4) chlorhexidine coated polymer glow discharged, and (5) material (4) recoated with another layer of chlorhexidine digluconate. These materials are tested for their in vitro antibacterial effects using disc diffusion technique against five different standard clinical staphylococcus strains, viz., Wood 46 (Staph. aureus), A 182 (Staph. epidermidis), A 313 (Staph. epidermidis), A 61 (Staph. epidermidis), and A 72 (Staph. epidermidis). Maximum antibacterial effects (zone of inhibition) are observed with polyurethanes incorporated with chlorhexidine digluconate (3) and chlorhexidine incorporated and glow discharged (4). Findings of this study indicate that glow discharge does not seem to produce either additive or synergistic antibacterial effects with chlorhexidine digluconate coated Angioflex material.
URI: http://dspace.sctimst.ac.in/jspui/handle/123456789/349
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.