Please use this identifier to cite or link to this item:
Title: Inhibition of platelet adhesion to glow discharge modified surfaces.
Authors: Sharma, C P
Chandy, T
Sunny, M C
Keywords: Biocompatibility
Issue Date: 1987
Publisher: Journal of biomaterials applications
Citation: Journal of biomaterials applications. 1; 4; 533-52
Abstract: Plasma glow technique has created much interest in the field of surface modification of polymers due to its versatility of generating active polar groups on the surface without affecting the bulk properties. Here an attempt is made to inter-relate the surface properties and platelet adhesion on various polymeric substrates due to plasma treatments. Initially, a critical review of the process and development of thrombosis upon contact of an artificial surface with blood, has been provided, which has been extended with the need for surface modifications to improve their blood compatibility and the versatility of plasma treatments for such modifications have been emphasized. Phospholipids like phosphoryl choline, phosphatidyl choline and phosphoryl ethanolamine were attached to Angioflex surface by plasma glow. The role of such modified substrates to interact with platelets were investigated using Tyrode washed calf platelets. It seems, glow discharge modified phosphoryl choline bilayers dramatically inhibited the platelet-surface binding, which may be due to their biochemical resemblance with thromboresistant surfaces of human blood cells. Further, the behaviour of all phospholipids towards bloodpolymer interaction is not similar and may change depending on the nature of their functional groups, net charge of the phospholipid adsorbed surface and their interaction with platelets and its activation. It is possible to chemically immobilize lipid bilayers on standard polymers, using plasma glow, to improve their biological performance; by suitably selecting the phospholipid combinations.
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.