Please use this identifier to cite or link to this item: http://dspace.sctimst.ac.in/jspui/handle/123456789/9190
Title: A photochemical method for immobilization of azidated dextran onto aminated poly(ethylene terephthalate) surfaces
Authors: Bhat, VT
James, NR
Jayakrishnan, A
Keywords: Polymer Science
Issue Date: 2008
Publisher: POLYMER INTERNATIONAL
Citation: 57 ,1;124-132
Abstract: BACKGROUND: Dextran, a bacterial polysaccharide, has been reported to be as good as poly(ethylene glycol) in its protein-rejecting and cell-repelling abilities. In addition, the multivalent nature of dextran is advantageous for surface grafting of biologically active molecules. We report here a method to photochemically bind dextran hydrogel films to aminated poly(ethylene terephthalate) (PET) surfaces in aqueous media using a heterobifunctional crosslinker, 4-azidobenzoic acid. In order to achieve this, dextran was first functionalized with the crosslinker using carbodiimide chemistry followed by photo-crosslinking and immobilization onto the nucleophile-rich aminated PET surfaces. RESULTS: The presence of the immobilized dextran on PET was verified by attenuated total-reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and contact angle measurements. The grafted surface was highly hydrophilic due to the heavily hydrated polysaccharide network on the surface as demonstrated by the near zero water contact angle. CONCLUSION: A photochemical method for surface immobilization of dextran onto aminated PET using aryl azide chemistry is a facile technique to generate highly hydrophilic and more hemocompatible surfaces. The aryl nitrenes generated by photolysis produce a metastable, electron-deficient intermediate, azacycloheptatetraene, which is believed to be responsible for the simultaneous crosslinking of dextran and its immobilization onto the aminated PET surface. The aryl azide chemistry reported here for dextran could be useful as a versatile technique for surface modification of other nucleophile-rich polymers to create dextran- or similar polysaccharide-immobilized surfaces. (c) 2007 Society of Chemical Industry.
URI: 10.1002/pi.2332
http://dspace.sctimst.ac.in/jspui/handle/123456789/9190
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.