Please use this identifier to cite or link to this item: http://dspace.sctimst.ac.in/jspui/handle/123456789/9661
Title: Effect of thermal annealing on the structural and optical properties of nanostructured zinc oxide thin films prepared by pulsed laser ablation
Authors: Vinodkumar, R
Lethy, KJ
Beena, D
Satyanarayana, M
Jayasree, RS
Ganesan, V
Nayar, VU
Pillai, VPM
Keywords: Energy & Fuels; Materials Science; Physics
Issue Date: 2009
Publisher: SOLAR ENERGY MATERIALS AND SOLAR CELLS
Citation: 93 ,1;74-78
Abstract: Zinc oxide (ZnO) films are prepared by pulsed laser ablation, on an optically flat quartz substrate for different deposition time. The influence of annealing temperature, on the structural and optical properties of ZnO films is investigated systematically using X-ray diffraction (XRD), energy dispersive Xray analysis (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectra, UV-vis spectroscopy and photoluminescence spectroscopy (PL). The XRD pattern shows that the as-deposited films are amorphous and the annealed films are polycrystalline. The average size of the crystalline grains varies from 9 to 26 nm in the films. The SEM and AFM images reveal uniform distribution of grains in the films and the grains are in the nanoscale dimension. Raman spectra suggest the hexagonal wurtzite phase for the ZnO films. The UV-visible spectra show an increase in transmittance with annealing temperature. The observation of very intense PL emission from the films annealed at 773 K, suggest the suitability of these films for applications as light emitters in the visible region. The ability to produce the stochiometric ZnO thin films with reproducible structural, morphological and optical characteristics should be useful as a suitable window material for practical industrial solar cell and display devices. (C) 2008 Elsevier B.V. All rights reserved.
URI: 10.1016/j.solmat.2008.04.014
http://dspace.sctimst.ac.in/jspui/handle/123456789/9661
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.