Sangeetha, VPSmriti, SSolanki, PRMohanan, PV2021-10-012021-10-012021-06Sangeetha VP, Smriti S, Solanki PR, Mohanan PV. Mechanism of action and cellular responses of HEK293 cells on challenge with zwitterionic carbon dots. Colloids and Surfaces B: Biointerfaces. 2021;202: 111698https://doi.org/10.1016/j.colsurfb.2021.111698https://dspace.sctimst.ac.in/handle/123456789/11059Carbon, an extremely versatile element has great demand in the field of nanoscience. Carbon-based nanostructures are exponentially increased due to its wide range of applications in biotechnological and environmental approaches; hence, its safety assessment is of greater concern. In the present study, high quantum yielding zwitterionic carbon dots were synthesized, characterized and its safety assessment at different concentration ranges (50–1600 μgmL−1) on HEK 293 cells was carried out. Cellular, mitochondrial, lysosomal integrity and ROS generation were assessed using specific fluorochromes.The key cellular event apoptosis was assessed by annexinpropidium iodide staining using imaging flow cytometry. Moreover, the mRNA levels of the apoptotic genes were determined by real-time PCR. The results revealed that the cell viability assays (MTT, NR) and mitochondrial membrane potential were altered on exposure to a higher concentration of zwitterionic CDs for 24 h. Also, annexinpropidiumiodidestaining exhibited an increased percentage of apoptotic cells upon exposure to zwitterionic CDs at higher concentrations. Further, apoptosis was confirmed by significantlyincreased expression of pro-apoptotic gene (Bax) together with decreased expression of Bcl-2/Bax ratio. Collectively, this study suggests that zwitterionic CDs induce apoptosis in HEK 293 at higher concentration and the safe range for its intended application is found to be 50−200 μg/mL.Mechanism of action and cellular responses of HEK293 cells on challenge with zwitterionic carbon dotsArticle