SCTIMST DSpace
Digital repository of Sree Chitra Tirunal Institute for Medical Sciences and Technology(SCTIMST), Trivandrum.
This repository is for SCTIMST's research, including project reports, theses, publications and more...
![](assets/dspace/images/banner.jpg)
Communities in DSpace
Select a community to browse its collections.
- Academic Presentations by various Departments and Divisions
Recent Submissions
Enhancing chemical signal transformation in lateral flow assays using aptamer-architectured plasmonic nanozymes and para-phenylenediamine
(Nanoscale, 2025-01) Sarathkumar, E; Jibin, K; Sivaselvam, S; Sharma, AS; Alexandar, V; Resmi, AN; Velswamy, P; Jayasree, RS
The widespread adoption and commercialization of lateral flow assays (LFAs) for clinical diagnosis have been hindered by limitations in sensitivity, specificity, and the absence of quantitative data. To address these challenges, we developed aptamer-architectured gold nanoparticles as nanozymes that catalytically convert para-phenylenediamine (PPD) into Bandrowski's base (BB), thereby amplifying signal strength and sensitivity. The physiochemical properties of the nanozymes were characterized and their specific binding efficiency was demonstrated using experimental studies. The nanozymes and PPD-based LFA test strips were evaluated for the detection of the COVID-19 spike protein in both test and clinical samples. Notably, we achieved a significant visual detection limit of 168 pg mL−1, with a signal quality enhancement of over 20-fold within 15-minute timeframe. Moreover, we rigorously tested 25 clinical samples to assess the transformative potential of the product, demonstrating a semi-quantitative analysis efficiency exceeding 90%. This performance outstripped commercially available LFA kits (87.5%). Notably, the colorimetric system exhibited an R2 value of 0.9989, a critical factor for clinical testing and industry integration. The incorporation of nanozymes and PPD in LFAs offers a cost-effective solution with significantly improved sensitivity, enabling the detection of ultra-low concentrations (picograms) of spike protein. By addressing key challenges in LFA-based diagnostics, the current technique underscores the potential of this transformative biomedical sensor for industry integration. It also highlights its suitability for commercialization, positioning it as a universal platform for diagnostic applications.
Ultrasensitive Detection of Blood-Based Alzheimer’s Disease Biomarkers: A Comprehensive SERSImmunoassay Platform Enhanced by Machine Learning
(ACS Chemical Neuroscience, 2024-11) Resmi, AN; Nazeer, SS; Dhushyandhun, ME; Paul, Willi; Chacko, BP; Menon, RN; Jayasree, RS
Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer’s disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ40, Aβ42, p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.
Atomically Precise Fluorescent Gold Nanocluster as a Barrier-Permeable and Brain-Specific Imaging Probe
(Chemistry: An Asian Journal., 2024-10) Nair, LV; Nair, RV; Lone. BA; Shenoy, SJ; Jayasree, RS
Photonic nanomaterials play a crucial role in facilitating the necessary signal for optical brain imaging, presenting a promising avenue for early diagnosis of brain-related disorders. However, the blood-brain barrier (BBB) presents a significant challenge, blocking the entry of most molecules or materials from the bloodstream into the brain. To overcome this, photonic nanocrystals in the form of gold clusters (LAuC) with size less than 3 nm, have been developed, with Levodopa conjugated to LAuC (Dop@LAuC) for targeted brain imaging. Dop@LAuC crosses the BBB and emits in the near-infrared (NIR) wavelength, enabling real-time optical brain imaging. An in vitro BBB model using brain endothelial cells showed that 50 % of Dop@LAuC crossed the barrier within 3 hours, compared to only 10 % of LAuC, highlighting the enhanced ability of L-dopa-conjugated gold clusters to penetrate the BBB. In vivo optical imaging in healthy mice further confirmed the material's efficacy to cross BBB without compromising the barrier integrity.
Fabrication and Characterization of Soy Protein/Polyvinyl Alcohol (PVA) Composite Membrane for Guided Tissue Regeneration
(Regenerative Engineering and Translational Medicine, 2024-10) Saranya, CV; Bridget Jeyatha, W; Deepu, DR; Bhatt, A; Lizymol, PP
Purpose
Periodontitis is an inflammatory disease that damages the periodontal tissue and leads to tooth loss. Guided tissue regeneration (GTR) is a membrane-based method that prevents the down growth of epithelial and fibroblast cells and gradually restores the periodontal tissues. Currently, collagen membranes exist as the top choice in the field of GTR membranes. However, disease transmission, poor mechanical strength and unpredictable degradation limit its use. The main aim of the study is to fabricate a soy protein–based GTR membrane with good mechanical properties, cell barrier function, and cytocompatibility.
Methods
Soy protein isolate (SPI) was extracted from the seeds of Glycine max, and the membranes (SPG-1, SPG-2, and SPG-3) were fabricated using SPI, polyvinyl alcohol (PVA), and glycerol (Gly) by aqueous solution casting method. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), contact angle, swelling analysis, and degradation studies of the membranes were carried out. Human periodontal ligament (hPDL) cells were used for the direct contact test, MTT assay, live-dead, cell adhesion, and membrane barrier function experiments.
Results
SPG-1 membrane exhibited a rough surface and significantly (p ≤ 0.05) lower contact angle (68°) than SPG-3. SPG-1 showed a lower swelling (74.03%) and weight loss percentage (42.13%) (p ≤ 0.001) than SPG-2 and SPG-3. SPG-1 membrane exhibited significantly (p ≤ 0.05) higher tensile strength of 5.7 MPa and suture pull-out strength of 9.04 N when compared with SPG-2 and SPG-3. SPG membranes were non-cytotoxic, cyto-compatible, and prevented the down growth of fibroblast cells.
Conclusion
SPG-1 membranes with 50% SPI stand out as a best candidate than other SPG membranes with better physiochemical properties. It favoured the growth and proliferation of hPDL cells and exhibited barrier properties.
Lay Summary
Periodontitis is a disease that affects the structure and function of the periodontal tissues, leading to teeth loss. Guided tissue regeneration (GTR) is a widely accepted treatment using a barrier membrane. Three different composite GTR membranes of soy protein, polyvinyl alcohol, and glycerol were fabricated by the solvent casting method by varying the amount of soy protein isolate. Physiochemical characterization and in vitro studies with human periodontal ligament cells and fibroblast cells demonstrated the suitability of the material for periodontal defect management.
RIGID KNEE BRACE FOR OSTEOARTHRITIS (Project - 7445)
(SCTIMST, 2022-10-20) Subhash, NN; Muraleedharan, CV