Browsing by Author "Anilkumar, PR"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Microgravity as a means to incorporate HepG2 aggregates in polysaccharide-protein hybrid scaffold(JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2016) Sarika, PR; James, NR; Anilkumar, PR; Raj, DK; Kumary, TVTissue culture under microgravity provides a venue which promotes cell-cell association while avoiding the detrimental effects of high shear stress. Hepatocytes cultured on carriers or entrapped within matrices under simulated microgravity conditions showed improved cell function and proliferation. In the present study, a new approach was adopted where a non-cell adherent scaffold was incorporated with hepatospheroids (HepG2) under microgravity. Gum arabic (GA) was cross-linked with gelatin (GA-Gel) and collagen (GA-Col) to prepare non-cell adherent scaffolds. Microgravity experiments with GA-Gel and GA-Col indicated that GA-Col is a better substrate compared to GA-Gel. Microgravity experiments of GA-Col scaffolds with HepG2 cells confirmed that the non-adherent surface with porous architecture can incorporate hepatocyte spheroids and maintain liver specific functions. Albumin and urea synthesis of hepatocytes was sustained up to 6 days under microgravity conditions in the presence of GA-Col scaffold. This new approach of using non-cell adherent matrix and microgravity environment for developing biological substitutes will be beneficial in tissue engineering, bioartificial liver devices and in vitro safety assessment of drugs.Item Modified gum arabic cross-linked gelatin scaffold for biomedical applications(MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014) Sarika, PR; Cinthya, K; Jayakrishnan, A; Anilkumar, PR; James, NRThe present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. (C) 2014 Elsevier B.V. All rights reserved.Item A Novel, Single Step, Highly Sensitive In-Vitro Cell-Based Metabolic Assay Using Honeycomb Microporous Polymer Membranes(J. Biomed. Nanotechnol., 2015-04) Velayudhan, S; Anilkumar, PR; Nair, PDThis study describes a novel, simple and versatile system for cell-based assays at the bench-top. The system consists of Polyurethane (PU) based honeycomb membrane with the active compounds/assay reagents dispensed on its pore linings. Membranes with functionalized pores were thus created and used for conducting cell based assays. As proof-of-concept Flourocein acetate (FDA) and Propidium iodide (PI) were embedded on the pore linings and live/dead assays were performed on L929 and Hacat cell lines. The results proved the sensitivity of the membrane based cell assay. To ensure the capacity of this system for high throughput applications, membrane based live/dead assay was performed on L929 cells with varying levels of viability. The results from this experiment were quantified by microscopic and spectrofluourimetric techniques both of which were found to correlate well. It was concluded that this simple membrane based cell assay is highly versatile and enables multiple compounds to be tested on the same cell/tissue. Furthermore, this method requires low volumes of assay reagents and eliminates many of the wet techniques that are involved in a conventional assay, without compromising on the sensitivity. It is anticipated that this functionalized membrane system could be easily adapted for both manual and automated high content screening experiments including in vitro biomaterial evaluation as well as cytotoxicity of nanomaterials.Item Sol-gel nanoporous silica as substrate for immobilization of conjugated biomolecules for application as fluorescence resonance energy transfer (FRET) based biosensor(Sensors and Actuators B: Chemical., 2013-06) Nampi, PP; Kartha, CC; Jose, G; Anilkumar, PR; Anilkumar, T; Varma, HKItem Strategies to tune electrospun scaffold porosity for effective cell response in tissue engineering(J. Funct. Biomater, 2019-07) Ameer, JM; Anilkumar, PR; Kasoju, NTissue engineering aims to develop artificial human tissues by culturing cells on a scaffold in the presence of biochemical cues. Properties of scaffold such as architecture and composition highly influence the overall cell response. Electrospinning has emerged as one of the most affordable, versatile, and successful approaches to develop nonwoven nano/microscale fibrous scaffolds whose structural features resemble that of the native extracellular matrix. However, dense packing of the fibers leads to small-sized pores which obstruct cell infiltration and therefore is a major limitation for their use in tissue engineering applications. To this end, a variety of approaches have been investigated to enhance the pore properties of the electrospun scaffolds. In this review, we collect state-of-the-art modification methods and summarize them into six classes as follows: approaches focused on optimization of packing density by (a) conventional setup, (b) sequential or co-electrospinning setups, (c) involving sacrificial elements, (d) using special collectors, (e) post-production processing, and (f) other specialized methods. Overall, this review covers historical as well as latest methodologies in the field and therefore acts as a quick reference for those interested in electrospinning matrices for tissue engineering and beyond