Browsing by Author "Appukuttan, PS"
Now showing 1 - 18 of 18
Results Per Page
Sort Options
Item Anti-alpha-galactoside antibody of the human plasma(INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 1996)Item Antigen-Induced Activation of Antibody Measured by Fluorescence Enhancement of FITC Label at Fc(JOURNAL OF FLUORESCENCE, 2015) George, G; Geetha, M; Appukuttan, PSThree anti-carbohydrate antibodies of defined specificity isolated from plasma were used to demonstrate that macromolecular antigen binding caused considerable enhancement of fluorescence of FITC-labeled antibody. Mono and disaccharide antigens which could compete with the large antigens in antibody binding could not however produce any increase in fluorescence. Fluorescence enhancement in a given antibody sample increased with the size of the occupying macromolecular antigen. Conversely in antibody samples of same ligand specificity isolated from plasma of different individuals, fluorescence enhancement produced by the same antigen correlated with specific activity of the antibody sample. Removal of Fc part of antibody, confirmed by electrophoresis and Fc-specific antibody binding, caused abolition of most of the antigen-driven fluorescence increase. Since antigen binding sites of antibodies were protected during FITC labeling, the above results suggest that conformational shift in Fc produced by occupation of binding sites by large antigens resulted in the enhancement of fluorescence of FITC tags on Fc. Data provides a tool for detection and measurement of specific ligands using fluorolabeled whole antibodies.Item Circulating Lp(a):LDL Complexes Contain LDL Molecules Proportionate to Lp(a) Size and Bind to Galectin-1: A Possible Route for LDL Entry into Cells(LIPIDS, 2014) Kalaivani, V; Appukuttan, PSThe molecular mechanism of vascular pathology mediated by circulating lipoprotein(a) [Lp(a)] remains unknown. We examined the role of two distinguishing features of Lp(a) viz non-covalent complex formation with a low density lipoprotein (LDL) and heavy glycosylation as determinants of binding of this lipoprotein and its LDL complex to cell-surface receptors. LDL isolated from the Lp(a):LDL complex, free LDL and oxidized LDL were equally efficient in forming a reconstituted complex with pure Lp(a). Complexed LDL in healthy individuals was equal in oxidation status to free LDL. The number of LDL molecules associated with each Lp(a) molecule (LDL index) in plasma samples increased steadily with Lp(a) size (correlation coefficient r = 0.834). Complex reconstituted from purified plasma Lp(a) and LDL maintained the same LDL index as plasma in accordance with Lp(a) size. Consequently, the percentage of complex-free Lp(a) in the plasma decreased sharply with Lp(a) size (r = -0.887). Although O-glycosylation measured in terms of lectin binding increased with Lp(a) size, the LDL index increased significantly faster than O-glycosylation among Lp(a) phenotypes of different plasma samples. Complexes with varying stoichiometry existed in the same plasma. Extra LDL complex molecules were not recognized by LDL receptors on human macrophages or rat cardiac fibroblasts indicating attachment to Lp(a) involved LDL receptor-binding sites. However, unlike free LDL complex LDL could attach through Lp(a) to immobilized form of galectin-1, a lectin ubiquitous on mammalian cells. Results suggest that phenotype-dependence of the physiological and pathological functions of Lp(a) may operate through differential LDL-carrier activity.Item Desialylation : -driven uptake of lipoprotein(a) to endothelial cells and monocytes / macrophages in diabetic cardiovascular patients: Is immune complex with natural antibodies a vehicle?Desialylation : -driven uptake of lipoprotein(a) to endothelial cells and monocytes / macrophages in diabetic cardiovascular patients: Is immune complex with natural antibodies a vehicle? ( Project - 5360 )(SCTIMST, 2020-07-16) Geetha, M; Appukuttan, PS; Ajitkumar, VKItem Dextran-binding human plasma antibody recognizes bacterial and yeast antigens and is inhibited by glucose concentrations reached in diabetic sera(MOLECULAR IMMUNOLOGY, 2003)Dextran-binding antibody was isolated in high yield from plasma of all 40 blood donors screened in a South Indian population. The antibody was purified by a single step affinity chromatography on Sephadex G100 using 1-O-methyl alpha-D-glucoside as eluant. Analysis of protein peaks obtained in size exclusion high pressure liquid chromatography (HPLC) revealed dominance of IgG and suggested the presence of polymeric IgA in this antibody. Methyl and para-nitrophenyl alpha-D-glucosides, in contrast to their beta-anomers, were very efficient inhibitors of binding of this antibody to dextran. Galactose and glucose were equally good inhibitors. Among disaccharide inhibitors sucrose was more efficient than maltose or melibiose. Hemoglobin artificially glycosylated to contain covalently-linked glucose or alpha-anomeric galactose was sugar-specifically recognized by this antibody. Galactose moieties in glycoproteins or polysaccharides were, however, not recognized. The dextran-binding antibody bound sugar-specifically to glycoconjugates from yeast (Saccharomyces cerevisiae) and to lipopolysaccharides from Klebsiella and group A Streptococci, but not to lipopolysaccharides from E. coli. Inhibition studies suggested glucose moiety with unsubstituted C2 and C4 and alpha-anomeric C1 as ideal for recognition by the dextran-binding antibody. Concentration of glucose required for 50% inhibition of binding of the purified antibody to polystyrene-coated dextran in phosphate buffered saline was above the glucose concentrations in normal sera, but well below those reached in diabetic sera. Binding of the antibody from dialysed plasma to immobilized dextran was lowered only marginally in presence of glucose at 4.5 mM (which nears normal serum glucose concentrations), but substantially in presence of the sugar at 20 mM and above which are reached in diabetic sera. If verified in vivo, inhibition of this antibody by high serum glucose may possibly be among reasons for the increased susceptibility of diabetics to infection. (C) 2003 Elsevier Science Ltd. All rights reserved.Item Dual Specificity of Human Plasma Lactose-Binding Immunoglobulin to Anomers of Terminal Galactose Enables Recognition of Desialylated Lipoprotein(a) and Xenoantigens(SCANDINAVIAN JOURNAL OF IMMUNOLOGY, 2014) Sabarinath, PS; Chacko, BK; Appukuttan, PSHuman plasma lactose-binding immunoglobulin (LIg) isolated by affinity chromatography on lactose-Sepharose was largely IgG with significant IgA and IgM contents. LIg-mediated agglutination of desialylated human RBC was inhibited equally by the alpha- and beta-anomers of methyl galactoside. Recognition of either the terminal alpha-galactose (TAG)-containing glycans of bovine thyroglobulin or the N-acetyl lactosamine (LacNAc)-terminating glycans of asialofetuin by LIg was inhibitable nearly as much by the alpha-galactoside melibiose as by the beta-galactoside lactose. Melibiose covalently conjugated to protein and coated on polystyrene wells captured several times more LIg molecules than its lactose analogue. LIg binding to bovine thyroglobulin or rabbit RBC membrane proteins, both bearing TAG was substantially reduced by prior treatment of the proteins with alpha-galactosidase to remove TAG though enzyme-treated glycans contained newly exposed LacNAc moieties. Desialylated O-linked oligosaccharides, however, were no ligand for LIg. Unlike LDL, plasma lipoprotein(a) [Lp(a)] coated on polystyrene well and desialylated by neuraminidase was recognized by LIg through terminal LacNAc moieties exposed by the enzyme on its apo(a) subunit. Further, same amount of added fluorescence-labelled LIg formed significantly more immune complex with Lp(a) in high Lp(a) plasma than in low Lp(a) plasma. Results suggest (1) possibility of a role for LIg in combating non-primate molecules and cells bearing TAG moiety and (2) a mechanism for Lp(a)-mediated vascular injury as diabetes, infections and inflammations induce greater release of neuraminidase into circulation.Item Glutaraldehyde cross-linking of lectins to marker enzymes: Protection of binding site by specific sugars(INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2000)The role of bound specific sugars in protecting the sugar binding activity of several galactose binding proteins during their covalent conjugation to horse radish peroxidase by glutaraldehyde-mediated cross-linking was examined by: a) affinity matrix binding of the conjugate, b) enzyme linked lectin assay and c) hemagglutination assay. During conjugation using 1% glutaraldehyde, protection of jack fruit (Artocarpus integrifolia) lectin (jacalin) activity depended on concentration of specific sugar present during conjugation; optimum protection was offered by 50 mM galactose. This indicated the presence of one or more primary groups at the binding site of jacalin, which is (are) essential for sugar binding. On the other hand, such essential amino group(s) was not indicated at the sugar binding site of the peanut lectin, bovine heart galectin or of the human serum anti alpha-galactoside antibody, since exclusion of sugar during their conjugation to HRP did not diminish sugar binding activity. The differential behavior is discussed in the light of reported differences in sugar specificities. Results indicated that sugar mediated blocking of active site may be used in characterization of the latter in lectins.Item IgA1 desialylated by microbial neuraminidase forms immune complex with naturally occurring anti-T antibody in human serum(IMMUNOLOGY LETTERS, 2008) Jayakumari, AN; Appukuttan, PSItem IgA1 is the premier serum glycoprotein recognized by human galectin-1 since T antigen (Gal beta 1 -> 3GalNAc-) is far superior to non-repeating N-acetyl lactosamine as ligand(INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2005)Human heart galectin-1 (HHL) was separated by high pressure liquid chromatography from endogenous glycoproteins co-purified with it during affinity chromatography. These glycoproteins offered excellent ligands for HHL binding and were rich in T antigen (Gal beta 1 -> 3 GalNAc-) of O-linked oligosaccharides. In enzyme linked lectin assay and hemagglutination inhibition assay, human IgA1, bovine fetuin and other O-glycosylated T antigen-bearing glycoproteins bound to the lectin efficiently in contrast to single N-acetyl lactosamine (LacNAc)bearing N-linked oligosaccharides released from them and to IgG which is not O-glycosylated. HHL binding to IgA1 and fetuin was unaffected by removal of their N-linked oligosaccharides by a-mannosidase. When immobilized, O-glycosylated serum proteins but not IgG could capture HHL from its solutions. Desialylated or polymeric IgA1 was better inhibitor than monomeric IgA1. The findings suggest a possible role for galectin-1 in anchoring of microbial and cancer cells known to be rich in T antigen, in high serum IgA1 turn over and in tissue sequestering of IgA1 immune complexes especially after their microbial desialylation in IgA nephropathy and other immune complex-mediated disorders. (c) 2005 Elsevier B.V. All rights reserved.Item Immunopathology of desialylation: human plasma lipoprotein(a) and circulating anti-carbohydrate antibodies form immune complexes that recognize host cells(MOLECULAR AND CELLULAR BIOCHEMISTRY, 2015) Sabarinath, PS; Appukuttan, PSHuman plasma lipoprotein(a) [Lp(a)], the dominant lipoprotein in atherosclerotic plaques, contains an apo(a) subunit of variable size linked to the apoB subunit of a low-density lipoprotein (LDL) molecule. Circulating lipoprotein immune complexes (ICs) assayed by ELISA using microplate-coated anti-apo(a) or anti-apoB antibody for capture and peroxidase-labelled anti-human immunoglobulins as probe consisted mostly of Lp(a) despite several-fold excess of LDL over Lp(a) in plasma. Microplate coating of plasma lipoprotein IC and probing with antibodies to apo(a) and apoB also revealed negligible presence of LDL compared to Lp(a). Peanut agglutinin specific to desialylated O-glycans bound significantly more to Lp(a) recovered after urea dissociation of IC than to free Lp(a). Plasma lipoproteins separated by ultracentrifugation and desialylated by neuraminidase formed IC with naturally occurring antibodies in normal plasma. These de novo ICs agglutinated desialylated but not normal human RBC in proportion to the polyagglutinin antibody titre of plasma used, suggesting availability of multiple unoccupied binding sites on the participating antibodies even after IC formation. Agglutination was inhibitable by galactosides and decreased 4-8 fold if precursor lipoprotein was selectively depleted of Lp(a), showing agglutinating ICs were contributed mainly by desialylated Lp(a) and galactose-specific antibodies. IC was 2 fold more agglutinating if lipoproteins used contained smaller rather than larger Lp(a) molecules of the same number. Small size/high plasma concentration Lp(a) phenotype and neuraminidase-releasing diseases including diabetes are risk factors for vascular disorders. Results suggest a possible route of Lp(a) attachment to vascular cells that offer terminal galactose on surface glycans following desialylation.Item Normal human plasma anti-beta-glucoside antibody has markedly elevated IgA content and binds fungal and yeast polysaccharides(IMMUNOLOGICAL INVESTIGATIONS, 2007) Geetha, M; Annamma, KI; Mathai, J; Appukuttan, PSNormal human plasma antibody that recognizes beta-linked glucoside moiety was purified by affinity chromatography on cellulose. The anti-beta-glucoside antibody had three times higher IgA to IgG ratio and substantially higher polymeric IgA content than total serum immunoglobulins. Cellobiose and other beta-glucosides were best inhibitors of its binding to polystyrene microwell-coated polysaccharides. In synthetic glycoproteins made by conjugating disaccharides to hemoglobin or bovine serum albumin, cellobiose, unlike lactose or maltose, was sugar-specifically recognized by the antibody. It also recognized polystyrene well-coated beta 1 -> 3 linked glycans of Saccharomyces cerevisiae, Candida albicans and of barley in decreasing order of affinity. Its sugar-binding site could thus accommodate beta-glucoside with or without substitution at C4 and C3. High IgA content along with the capacity to bind common microbial and dietary antigens pointed to the immune inflammatory potential of the antibody.Item Peanut (Arachis hypogaea) lectin recognizes alpha-linked galactose, but not N-acetyl lactosamine in N-linked oligosaccharide terminals(INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2001)Peanut (Arachis hypogaea) agglutinin (PNA) is extensively used as tumour marker as it strongly recognises the cancer specific T antigen (Ga1 beta --> 3GalNAc-), but not its sialylated version. However, an additional specificity towards Gal beta1 --> 4GlcNAc (LacNAc), which is not tumour specific, had been attributed to PNA. For correct interpretation of lectin histochemical results we examined PNA sugar specificity using naturally occurring or semi-synthetic glycoproteins, matrix-immobilised galactosides and lectin-binding tissue glycoproteins, rather than mono- or disaccharides as ligands. Dot-blots, transfer blots or polystyrene plate coatings of the soluble glycoconjugates were probed with horse-radish peroxidase (HRP) conjugates of PNA and other lectins of known specificity. Modifications of PNA-binding glycoproteins, including selective removal of O-linked oligosaccharides and treatment with glycosidases revealed that Gal beta1 --> 4GlcNAc (LacNAc) was ineffective while terminal alpha -linked galactose (TAG) as well as exposed T antigen (Gal beta1 --> 3 GalNAc-) was excellent as sugar moiety in glycoproteins for their recognition by PNA. When immobilised, melibiose was superior to lactose in PNA binding. Results were confirmed using TAG-specific human serum anti-a-galactoside antibody. (C) 2001 Elsevier Science B.V. All rights reserved.Item Peanut (Arachis hypogaea) lectin: Use in quantitation of desialylation of glycoproteins(INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2000) Chacko, BK; Appukuttan, PSA high affinity lectin from an easily available source, peanut (Arachis hypogaea) agglutinin (PNA) which specifically recognizes desialylated versions of sialylated oligosaccharides is a unique tool in glycoconjugate biotechnology. By a single step affinity chromatography on cross-linked guar galactomannan, PNA was purified to homogeneity with 19 times higher hemagglutinating activity than the sample prepared by existing methods involving defatting with organic solvents. Agglutinating activity of the new preparation remained unchanged for at least 6 months while PNA prepared from defatted seed lost activity within one week. Glycoproteins desialylated to varying degrees were prepared by treating bovine fetuin with 0.1 N H2SO4 at 80 degreesC for durations of 10 seconds and above. Enzyme-linked lectin assay of desialylation of differentially desialylated glycoproteins coated on microplates, using horse radish peroxidase (HRP) conjugate of PNA (PNA-HRP), along with sialic content assay revealed that PNA can be used as a quantitative probe for assay of desialylation in sialylated glycoproteins.Item Plasma anti-alpha-galactoside antibody binds to serine- and threonine-rich peptide sequence of apo(a) subunit in Lp(a)(GLYCOCONJUGATE JOURNAL, 2014) Geetha, M; Kalaivani, V; Sabarinath, PS; Appukuttan, PSLipoprotein(a) immune complexes [Lp(a) IC] of varying particle density obtained by ultracentrifugation of plasma from normal healthy donors were markedly dominated by IgG. Lp(a) and immunoglobulins were liberated from plasma Lp(a) IC by treatment with melibiose, a sugar specific for circulating anti-alpha-galactoside antibody (anti-Gal). Upon incubation with plasma lipoprotein fraction anti-Gal but not the alpha-glucoside-specific antibody from human plasma formed de novo IC with Lp(a). Binding of Lp(a) sugar-reversibly enhanced the fluorescence of FITC-labeled anti-Gal as did binding of alpha-galactoside-containing glycoproteins. This effect apparently due to conformational shift in the Fc region of the antibody was also produced by apo(a) subunit separated from Lp(a) and de-O-glycosylated apo(a) but not by any other plasma lipoproteins or by Lp(a) pre-incubated with the O-glycan-specific lectin jacalin. O-Glycans and their terminal sialic acid moieties in apo(a) of circulating Lp(a)-anti-Gal IC, in contrast to those in pure Lp(a), were inaccessible to jacalin and anion exchange resin, respectively. Unlike other plasma lipoproteins, Lp(a) inhibited Griffonia simplicifolia isolectin B4 which also accommodates serine- and threonine-rich peptide sequence (STPS) as surrogate ligand to alpha-galactosides at its binding site. Results suggest that anti-Gal recognizes STPS in the O-glycan-rich regions of apo(a) subunit in Lp(a) which contains no alpha-linked galactose.Item Plasma anti-alpha-galactoside antibody mediates lipoprotein(a) binding to macrophages(GLYCOCONJUGATE JOURNAL, 2016) Sheela, B; George, G; Mandagini, G; Appukuttan, PSLipoprotein (a) [Lp(a)] is the dominant lipid in atherosclerotic plaques though it is much less numerous than LDL or HDL in circulation. Molecular mechanism of selective uptake of Lp(a) into macrophages is unclear. Lp(a) was reported to form circulating immune complexes with the IgG-dominated plasma anti-alpha-galactoside antibody (anti-Gal) using the serine- and threonine-rich peptide sequences ( STPS) on its apo(a) subunit as surrogate ligand but left the other binding site of antibody free. We examined if these monovalent immune complexes could bind to smaller STPS-containing molecules on macrophage surface. Using placental membrane O-glycosylated proteins (PMOP) isolated by lectin affinity chromatography as model it was shown that human cell surface glycoproteins were small enough to occupy both binding sites of anti-Gal since they increased the fluorescence of FITC label at Fc part of anti-Gal and inhibited binding of anti-Gal and Griffonia simplicifolia lectin of similar specificity to immobilized ligands. Pre-incubation with anti-Gal facilitated Lp(a) attachment to macrophages unless anti-Gal-specific sugar was present. Anti-Gal-mediated attachment of apo(a) to macrophages increased with the number of apo(a) subunits. Further, anti-Gal-mediated binding of the same sample of apo(a) increased with the specific activity of anti-Gal sample. Finally binding of anti-Gal and anti-Gal-apo(a) complex to PMOP and macrophages respectively was mostly inhibited by LDL suggesting STPS as major anti-Gal epitopes on the cell surface. Results indicated that circulating Lp(a)-anti-Gal immune complexes anchor on macrophages using STPS-bearing cell surface glycoproteins as ligands and offer a pathway for Lp(a) sequestration into macrophages.Item Relative affinities of bovine brain 14 kDa galactose lectin binding to individual endogenous gangliosides(INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 1997)Sugar-specific binding of bovine brain 14 kDa galactose-binding lectin (BBL) to individual endogenous gangliosides (GM1, GM2, GD1a, GD1b and GT1b) was studied using affinity electrophoresis of ganglioside-lectin mixture in polyacrylamide gel at pH 8.3. Unbound (free) lectin moved ahead while ganglioside-lectin complex moved very little. Sugar-specificity of binding was confirmed by reversal of the interaction by (i) presence of lactose along with the lectin and (ii) pretreatment of gangliosides with another galactose-binding lectin, Ricinus communis agglutinin. Stoichiometry of ganglioside-BBL interaction revealed that GT1b had the highest affinity for the lectin followed by GD1b and GM2, while GM1 and GD1a had the least affinity. Results indicated that a terminal sialic acid moiety covering a galactose moiety may at times enhance BBL recognition of the latter and that changes in ganglioside pattern is a possible modulator of lectin function in vivo.Item Separation of bovine heart galactose lectin from endogenous glycoproteins co-purified with the lectin during affinity chromatography(JOURNAL OF BIOSCIENCES, 1998) Appukuttan, PS; Annamma, KI; Geetha, M; Jaison, PLDuring affinity chromatographic purification of bovine heart 14 kDa galactose-binding lectin (galectin 1) on lactose-Sepharose, several high molecular weight non-lectin glycoproteins were co-purified with the lectin. Glycoprotein binding to the affinity matrix was neither hydrophobic nor ionic, but galactose-dependent since lactose abolished binding. Purification of galectin from the co-purified glycoproteins by affinity electrophoresis in presence of the specific sugar lactose increased agglutination activity about 65-fold, indicating that a complex containing galectin molecules bound sugar specifically to endogenous glycoproteins with sugar binding sites still available had been retained on lactose-Sepharose.Item Terminal alpha-linked galactose rather than N-acetyl lactosamine is ligand for bovine heart galectin-1 in N-linked oligosaccharides of glycoproteins(JOURNAL OF MOLECULAR RECOGNITION, 2002)Preference for the beta-anomer of galactose attributed to the bovine heart 14 kDa galectin-1 (BHL-14) was re-examined using natural glycoproteins and artificially glycosylated proteins as ligands. Endogenous glycoproteins co-purified with BHL-14 during its affinity chromatographic isolation contained oligosaccharides bearing terminal alpha-linked galactose (TAG) moieties and were superior even to laminin as ligands for homogeneous BHL-14 obtained by high pressure liquid chromatography. Artificially glycosylated proteins prepared by covalent attachment of melibiose to proteins and containing TAG moieties were ligands for BHL-14, unlike their lactose counterparts which contained beta-linked galactose. Enzymatic removal of TAG moieties from the following glycoproteins abolished their recognition by BHL-14: (i) endogenous glycoproteins co-purified with BHL-14; (ii) mouse laminin; and (iii) bovine heart glycoproteins recognized by peanut agglutinin. Modification of TAG in laminin using galactose oxidase also rendered the glycoprotein inert towards BHL-14. Desialylation of human IgG, bovine thyroglobulin or laminin failed to increase the affinity of BHL-14 for these glycoproteins. Since removal of TAG or of sialic acid moiety exposed LacNAc (Gal beta1-->4 GlcNAc) in these glycoproteins, these results indicated that TAG, rather than LacNAc, is a ligand for BHL-14 on N-linked oligosaccharide chains of glycoproteins. Ready recognition of human IgA and jacalin-binding human plasma glycoproteins and non-recognition of human IgG suggested that T antigen (Galbeta1-->3 GalNAc) may also be ligand for galectin-1. Copyright (C) 2002 John Wiley Sons, Ltd.