Browsing by Author "Hingwala, Divyata"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Applications of 3D CISS sequence for problem solving in neuroimaging.(The Indian journal of radiology & imaging, 2011)Three-dimensional (3D) constructive interference in steady state (CISS) is a gradient-echo MRI sequence that is used to investigate a wide range of pathologies when routine MRI sequences do not provide the desired anatomic information. The increased sensitivity of the 3D CISS sequence is an outcome of the accentuation of the T2 values between cerebrospinal fluid (CSF) and pathological structures. Apart from its well-recognized applications in the evaluation of the cranial nerves, CSF rhinorrhea and aqueduct stenosis, we have found the CISS sequence to be useful for the cisternal spaces, cavernous sinuses and the ventricular system, where it is useful for detecting subtle CSF-intensity lesions that may be missed on routine spin-echo sequences. This information helps in the management of these conditions. After a brief overview of the physics behind this sequence, we illustrate its clinical applications with representative cases and discuss its potential role in imaging protocols.Item Clinical utility of susceptibility-weighted imaging in vascular diseases of the brain(NEUROLOGY INDIA, 2010)Susceptibility-weighted imaging (SWI) is a rapidly evolving technique that utilizes both the magnitude and phase information to obtain valuable information about susceptibility changes between tissues. SWI is very sensitive to the paramagnetic effects of deoxyhemoglobin. SWI plays an important role in the diagnostic evaluation and management of acute stroke. In addition, it also plays an important role in the imaging of patients with chronic arterial occlusion and in understanding the effects of chronic infarction, like incomplete infarction and cortical laminar necrosis. The hemodynamic status and oxygen extraction fraction can also be evaluated. SWI is useful in evaluating cerebral venous sinus thrombosis by demonstrating the hemorrhagic venous infarction and thrombus in the sinus and the cortical veins, as well as secondary phenomena like venous stasis in the form of engorged cortical and transmedullary veins and collateral slow flow. Low-flow vascular malformations that are not visualized well on conventional sequences are depicted in exquisite detail along with the venous components on SWI. SWI is used for evaluating cavernomas, developmental venous anomalies, telangiactasias, dural arteriovenous fistulas and the various components of arteriovenous malformations. It has also evolved as a noninvasive technique for evaluating various anomalies of the venous system without administering contrast. Vasculopathies and vasculitis are associated with cerebral microbleeds which are detected on SWI. On the basis of the additional information provided by SWI, it can be included in the routine brain imaging protocol.