Browsing by Author "Jalaja, K"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications(MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016) Jalaja, K; Sreehari, VS; Kumar, PRA; Nirmala, RJGelatin nanofiber fabricated by electrospinning process is found to mimic the complex structural and functional properties of natural extracellular matrix for tissue regeneration. In order to improve the physico-chemical and biological properties of the nanofibers, graphene oxide is incorporated in the gelatin to form graphene oxide decorated gelatin nanofibers. The current research effort is focussed on the fabrication and evaluation of physicochemical and biological properties of graphene oxide-gelatin composite nanofibers. The presence of graphene oxide in the nanofibers was established by transmission electron microscopy (TEM). We report the effect of incorporation of graphene oxide on the mechanical, thermal and biological performance of the gelatin nanofibers. The tensile strength of gelatin nanofibers was increased from 829 +/- 0.53 MPa to 21 +/- 2.03 MPa after the incorporation of GO. In order to improve the water resistance of nanofibers, natural based cross-linking agent, namely, dextran aldehyde was employed. The cross-linked composite nanofibers showed further increase in the tensile strength up to 56.4 +/- 2.03 MPa. Graphene oxide incorporated gelatin nanofibers are evaluated for bacterial activity against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria and cyto compatibility using mouse fibroblast cells (L-929 cells). The results indicate that the graphene oxide incorporated gelatin nanofibers do not prevent bacterial growth, nevertheless support the L-929 cell adhesion and proliferation. (C) 2016 Elsevier B.V. All rights reserved.Item Modified dextran cross-linked electrospun gelatin nanofibres for biomedical applications(CARBOHYDRATE POLYMERS, 2014) Jalaja, K; Kumar, PRA; Dey, T; Kundu, SC; James, NRElectrospun gelatin nanofibres attract attention of bioengineering arena because of its excellent biocompatibility and structural resemblance with native extracellular matrix. In this study, we have developed gelatin nanofibres using an innovative cross-linking approach to minimize cytotoxic effects. Gelatin was dissolved in water:acetic acid (8:2, v/v) solution and electrospun to form nanofibres with diameter in the range of 156 +/- 30 nm. The nanofibres were cross-linked with a modified polysaccharide, namely, dextran aldehyde (DA). Cross-linking with DA could be achieved without compromising the fibrous architecture. DA cross-linked gelatin nanofibres maintained the fibrous morphology in aqueous medium. These mats exhibit improved mechanical properties and gradual degradation behaviour. The nanofibres were evaluated for cytotoxicity, cell adhesion, viability, morphology and proliferation using L-929 fibroblast cells. The results confirmed that DA cross-linked mats were non cytotoxic towards L-929 cells with good cell adhesion, spreading and proliferation. (C) 2014 Elsevier Ltd. All rights reserved.