Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • SCTIMST
  • Annual Reports
  • Patents
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jayachandran, T"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Item
    Computing the difference between life and death: Prerupture blood flow analysis of a fatal aneurysm bleed
    (NEUROLOGY INDIA, 2016) Sudhir, BJ; Reddy, JB; Menon, G; Jayachandran, T
    Although hemodynamics plays a key role in the genesis, expansion, and rupture of an aneurysm, quantified hemodynamic parameters for comparison have not been standardized for predicting the risk of rupture of intracranial aneurysms. Computational fluid dynamics is being increasingly used in near-realistic, patient-specific simulation of blood flow in intracranial aneurysms. A simulation was carried out on the computed tomography (CT) angiogram image of a patient harboring a giant internal carotid artery aneurysm. Since the CT angiogram was performed a few hours before the fatal rupture of the aneurysm, the study could give an insight into the hemodynamics of the aneurysm that tipped it to rupture. Wall shear stress, pressure distribution, and flow streamlines were obtained using computational methods. These objective results could form the basis of reference for future studies employing simulation techniques for predicting aneurysmal rupture.
  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback