Browsing by Author "Joseph, MK"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Nanotheranostic Probe Built on Methylene Blue Loaded Cucurbituril [8] and Gold Nanorod: Targeted Phototherapy in Combination with SERS Imaging on Breast Cancer Cells(Journal of Physical Chemistry B, 2021-12) Narayanan, N; Kim, JH; Santhakumar, H; Joseph, MK; Karunakaran, V; Shamjith, S; Saranya, G; Sujai, PT; Jayasree, RS; Burman, I; Maiti, KKRecent advancements in a nanoarchitecture platform for safe and effective targeted phototherapy in a synergistic fashion is an absolute necessity in localized cancer therapy. Photothermal and photodynamic therapies (PTT and PDT) are considered as the most promising localized therapeutic intervention for cancer management as they have no long-term side effects and are minimally invasive and affordable. Herein, we have demonstrated a tailor-made nanotheranostic probe in which macrocyclic host cucurbituril [8] (CB[8]) is placed as a glue between two gold nanorods (GNRs) within ∼3 nm gaps in linear nanoassemblies with exquisitely sensitive plasmonics that exert combined phototherapy to investigate the therapeutic progression on human breast cancer cells. Photosensitizer methylene blue was positioned on CB[8] to impart the PDT effect, whereas GNR was responsible for PTT on a single laser trigger ensuring the synchronized phototherapy. Furthermore, the nanoconstruct was tagged with targeting anti-Her2 monoclonal antibody (MB-CB[8]@GNR-anti-Her2) for localized PTT and PDT on Her2 positive SKBR3 cells, subsequent cellular recognition by surface-enhanced Raman spectroscopy (SERS) platform, and further assessment of the combined intracellular phototherapy. Hence, the current strategy is definitely marked as a proof-of-concept straightforward approach that implies the perfect nature of the combined phototherapy to achieve an efficient cancer treatment.Item A new concept in the sewing rings of mechanical heart valves(. Asian Cardiovasc Thorac Ann., 2012-04) Kurian, MV; Umashankar, PR; Sabareeswaran, A; Shenoy, SJ; Subban, V; Joseph, MKBACKGROUND: Valve-associated complications challenge the quality of life and longevity after heart valve replacement. Inappropriate healing may be a contributing factor. OBJECTIVE: To evaluate a new design mechanical heart valve in an animal model. METHODS AND RESULTS: The new valve was fabricated by substituting the sewing ring with an inbuilt suture ridge and an overlying fabric flap. It improved the effective orifice area. Animal experiments were performed on pigs to compare this valve with standard valve models. The animals were kept on dual antiplatelet drugs. Six of the 8 test animals survived the observation period of 140 days compared to 2 of the 6 controls. Among the test valves, one had thrombosis and 3 had significant tissue hyperplasia, whereas 5 control valves had thrombosis associated with significant tissue hyperplasia. Three test valves had paravalvular defects compared to none in the control group. Histology showed good tissue incorporation of the fabric flap of the test valves, whereas the control valves had tissue infiltration limited to the peripheral fabric layer of the sewing ring. CONCLUSION: The new valve has improved effective orifice area, and the animal study showed better survival, good healing, and a lower incidence of thrombosis and tissue hyperplasia.