Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • SCTIMST
  • Annual Reports
  • Patents
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kanakarajan, V"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Item
    A cholecystic extracellular matrix-based hybrid hydrogel for skeletal muscle tissue engineering
    (Journal of Biomedical Materials Research, 2020-05) Raj, R; Sobhan, PK; Kanakarajan, V; Pratheesh, KV; Anilkumar, TV
    Tailoring the properties of extracellular matrix (ECM) based hydrogels by conjugating with synthetic polymers is an emerging method for designing hybridhydrogels for a wide range of tissue engineering applications. In this study, poly(ethylene glycol) diacrylate (PEGDA), a synthetic polymer at variable concentrations (ranging from 0.2 to 2% wt/vol) was conjugated with porcine cholecyst derived ECM (C-ECM) (1% wt/vol) and prepared a biosynthetic hydrogel having enhanced physico-mechanical properties, as required for skeletal muscle tissue engineering. The C-ECM was functionalized with acrylate groups using activated N-hydroxysuccinimide ester-based chemistry and then conjugated with PEGDA via free-radical polymerization in presence of ammonium persulfate and ascorbic acid. The physicochemical characteristics of the hydrogels were evaluated by Fourier transform infrared spectroscopy and environmental scanning electron microscopy. Further, the hydrogel properties were studied by evaluating rheology, swelling, gelation time, percentage gel fraction, in vitro degradation, and mechanical strength. Biocompatibility of the gel formulations were assessed using the C2C12 skeletal myoblast cells. The hydrogel formulations containing 0.2 and 0.5% wt/vol of PEGDA were non-cytotoxic and found suitable for growth and proliferation of skeletal myoblasts. The study demonstrated a method for modulating the properties of ECM hydrogels through conjugation with bio-inert polymers for skeletal muscle tissue engineering applications.
  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback