Browsing by Author "Kasoju, N"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Bioengineering a pre-vascularized pouch for subsequent islet transplantation using VEGF-loaded polylactide capsules(Biomaterials Science, 2020-12) Kasoju, N; Patikova, A; Wawrzynska, E; Vojtiskova, A; Sedlacik, T; Kumorek, M; Pop-Georgievski, O; Sticova, E; Kriz, J; Kubies, DThe effectiveness of cell transplantation can be improved by optimization of the transplantation site. For some types of cells that form highly oxygen-demanding tissue, e.g., pancreatic islets, a successful engraftment depends on immediate and sufficient blood supply. This critical point can be avoided when cells are transplanted into a bioengineered pre-vascularized cavity which can be formed using a polymer scaffold. In our study, we tested surface-modified poly(lactide-co-caprolactone) (PLCL) capsular scaffolds containing the pro-angiogenic factor VEGF. After each modification step (i.e., amination and heparinization), the surface properties and morphology of scaffolds were characterized by ATR-FTIR and XPS spectroscopy, and by SEM and AFM. All modifications preserved the gross capsule morphology and maintained the open pore structure. Optimized aminolysis conditions decreased the Mw of PLCL only up to 10% while generating a sufficient number of NH2 groups required for the covalent immobilization of heparin. The heparin layer served as a VEGF reservoir with an in vitro VEGF release for at least four weeks. In vivo studies revealed that to obtain highly vascularized PLCL capsules (a) the optimal VEGF dose for the capsule was 50 μg and (b) the implantation time was four weeks when implanted into the greater omentum of Lewis rats; dense fibrous tissue accompanied by vessels completely infiltrated the scaffold and created sparse granulation tissue within the internal cavity of the capsule. The prepared pre-vascularized pouch enabled the islet graft survival and functioning for at least 50 days after islet transplantation. The proposed construct can be used to create a reliable pre-vascularized pouch for cell transplantation.Item Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink.(International J of Biological Macromolecules, 2021-10) Lakshmi, TS; Riya, Raju; Suvanish, Kumar; Geevarghese, R; Renjith P., Nair; Kasoju, N; Bhatt, AIntroduction: Biofabrication of skin tissue equivalents using 3D bioprinting technology has gained much attention in recent times due to the simplicity, the versatility of the technology and its ability in bioengineering biomimetic tissue histology. The key component being the bioink, several groups are actively working on the development of various bioink formulations for optimal skin tissue construction. Methods: Here, we present alginate (ALG), gelatin (GEL) and diethylaminoethyl cellulose (DCEL) based bioink formulation and its application in bioprinting and biofabrication of skin tissue equivalents. Briefly, DEAE cellulose powder was dispersed in alginate solution with constant stirring at 60 °C to obtain a uniform distribution of cellulose fibers; this was then mixed with GEL solution to prepare the bioink. The formulation was systematically characterized for its morphological, physical, chemical, rheological, biodegradation and biocompatibility properties. The printability, shape fidelity and cell-laden printing were assessed using the CellInk bioprinter. Results: The bioink proved to be a good printable, non-cytotoxic and stable hydrogel formulation. The primary human fibroblast and keratinocyte-loaded 3D bioprinted constructs showed excellent cell viability, collagen synthesis, skin-specific marker and biomimetic tissue histology. Conclusion: The results demonstrated the successful formulation of ALG-GEL-DCEL bioink and its application in the development of human skin tissue equivalents with distinct epidermal-dermal histological features.Item Copper(ii) salen-based complexes as potential anticancer agents(New Journal of Chemistry, 2022-05) Mohan, N; Vidya, CV; Vasudevan, S; Jimna, MA; Kasoju, N; Mohanan, PV; Sreejith, SS; Prathapachandra Kurup, MRIn this work, we have systematically designed and synthesized four Cu(II) salen compounds (1–4), which have been characterized using various spectroscopic and analytical techniques. Single-crystal XRD studies were carried out on three of the compounds (1, 2 and 4), which revealed that all of them have a water molecule encapsulated/pseudo-encapsulated in the N2O4 cavity. The binding affinity of the complexes with calf thymus DNA (CT-DNA) was explored using UV-visible and fluorescence techniques. The compounds exhibit excellent DNA binding and cleavage activities. The binding mechanism was probed by molecular docking studies. These results display high binding-constant values owing to the intercalative type of binding. In addition, the binding affinity of the compounds with proteins was also studied via an in silico molecular-docking method using human serum albumin as the receptor. The in vitro cytotoxic effect of the complexes was evaluated in the HeLa cell line, derived from cervical cancer cells. The cleavage of DNA strands was investigated using gel electrophoresis. All of the tested compounds show a high binding-constant value with both DNA and protein and exhibit cytotoxic effects towards cancerous cells. The observed toxicity of these compounds towards a normal cell line could be minimized via interaction of the metal centre with the detoxifier glutathione, and detoxification studies were also conducted. The synthesized compounds were found to be potential candidates for the pharmaceutical industry. Considering the results and compared with existing reports, we propose a promising candidate (compound 4) for the development of efficient therapeutic drugs.Item . Exploring the Potential of Alginate-Gelatin-Diethylaminoethyl Cellulose Fibrinogen based Bioink for 3D Bioprinting of Skin(Carbohydrate Polymer Technologies and Applications, 2022-06) Ramakrishnan, R; Kasoju, N; Raju, R; Geevarghese, R; Gauthaman, A; Bhatt, ADesigning printable bioinks for 3D bioprinting capable of supporting cellular viability with post-printing functionality remains challenging. Native ECM offers several physical, chemical, and biological cues that are difficult to restore using only a single component. Herein, we have optimized a multicomponent-based bioink formulation comprising alginate (ALG), gelatin (GEL), diethylaminoethyl cellulose (DCEL) and fibrinogen (FIB), termed as ALG-GEL-DCEL-FIB bioink for potential application in bioprinting and biofabrication of skin tissue equivalents. The designed formulation was extensively studied for its printability, physico-chemical, rheological, and biocompatibility properties. Excellent printability, shape fidelity and cell-laden tissue equivalent printing were established using the RegenHu 3D Discovery Bioprinter. The human primary fibroblast and keratinocyte-laden bioprinted constructs exhibited good cell viability. Long term culture of 4 weeks comprising 5 days of air-liquid-interphase followed by 21 days of submerged culture produced biomimetic tissue histology in the ALG-GEL-DCEL-FIB bioink printed constructs. Specific epidermal-dermal marker expressions proving functionality were evident in immunohistochemical, biochemical and gene expression analysis. The ALG-GEL-DCEL-FIB bioink may be explored further for potential biofabrication and therapeutic applications.Item Fabrication of co-cultured tissue constructs using a dual cell seeding compatible cell culture insert with a clip-on scaffold for potential regenerative medicine and toxicological screening application(Journal of Science: Advanced Materials and Devices, 2020-06) Ameer, JM; Ramesh Babu, V; Vinod, D; Nishad, KV; Sabareeswaran, A; Anil Kumar, PR; Kasoju, NTissue engineering is emerging as a modern medicine fascination towards the establishment of human tissue banks; yet, these approaches typically involve cultures of only one type of cell and, therefore, do not recapitulate the native tissue physiology in toto. Co-culture models, comprised of different cell types, can potentially create the next level of complexity. However, conventional approaches involving multiple cell types and cell culture inserts do have limitations. To this end, here we demonstrate a novel cell culture insert that allows the use of any custom-made scaffold, free-flow of fluids/gases, dual cell seeding on either sides of the insert, easy stacking of multiple inserts and resizing it to any multi-well plate format as well as culture dishes. To prove the concept, electrospun silk fibroin scaffold was clipped onto the insert and was used for co-culturing of keratinocytes and fibroblast cells. The results indicated a successful fabrication of spatially organized skin tissue constructs having epidermal and dermal equivalent histology. Cell-laden inserts were stacked and used for simulated transportation studies. However, the conditions need further fine-tuning. All together, the results indicated that the novel cell culture insert with silk fibroin scaffold could be used as a facile, versatile and scalable approach to fabricate and transport 3D co-cultured tissue constructs in vitro, including but not limited to skin. The resultant tissue constructs can be explored for therapeutic applications, for instance as artificial skin substitute in wound healing, and for toxicological applications, for instance as reconstructed skin tissue model in skin irritation testing.Item Hydroxyapatite cages with aligned pores for bone grafting – Seeding of human osteoblast-like cells in vitro and their response in dynamic culture mode(Ceramics International, 2021-11) Athira, RK; Gayathry, G; Anil Kumar, PR; Harikrishna Varma, PR; Kasoju, N; Manoj, KomathHydroxyapatite (HA) is a highly regarded synthetic bone graft material. Porous HA ceramics blocks are used to substitute harvested natural bone grafts. Being similar to bone mineral, HA material integrates with the host bone through surface osteointegration and slowly resorb along with the natural bone remodeling process. The blocks in use currently have random and tortuous pore structures. The present work explores the usefulness of cage-like HA ceramic design with end-to-end open pores, with the help of in vitro cell culture methods. Such a structure, on implantation, will take up the blood factors and cells and host the bone remodeling process inside the bulk of the cage, leading to early healing. In the study, HA samples with aligned through-pores were prepared and explored in vitro, with a focus on how the pores host the cells inside and to what level the cells maintain their activity. Human osteoblast-like cells (HOS) were used, at different seeding and culturing approaches. Cell seeding was done through (i) conventional large volume cell suspension, (ii) a confined mini chamber with a limited volume of cell suspension, and (iii) placing a concentrated drop of cell suspension directly on top of the scaffold. The third approach gave the best cell adhesion and proliferation, and hence used for further explorations. A dynamic culture system was designed in-house by bifurcating the cell culture wells using vertical inserts, holding the samples horizontally with their ends open to both sides, and making the media flow across using a rocker platform. The HOS cell adhesion, viability and proliferation were tested in the HA cages, in static and dynamic culture conditions, with conventional porous ceramics as the control. The cell infiltration was deeper and the cell viability over a period of 7 days was significantly higher in dynamic culture conditions in the test samples.Item Mesenchymal stem cell culture in aligned porous hydroxyapatite scaffolds using a multiwell plate bioreactor for bone tissue engineering(MedComm – Future Medicine, 2022-09) Gayathry, G; Athira, RK; Anju, MS; Anil Kumar, PR; Harikrishna Varma, PR; Kasoju, N; Komath, MRegeneration of bone lost by trauma, diseases and aging, and restoration of its load-bearing function are major clinical challenges. Hydroxyapatite (HA) is a clinically proven scaffold material for bone grafting, but the random-pore structure limits the homing of the cells inside the graft and the bone regeneration progresses with the resorption of the graft material. This work is based on the hypothesis that aligned through pores in the graft will lead to a faster healing by homing the local cells inside and provide a better environment for new bone formation through the graft structure. The investigation was done using aligned porous HA scaffolds seeded with human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) and cultured in a multiwell format bioreactor setup. The cell adhesion was studied by microscopy, cell proliferation was evaluated by Alamar blue assay and osteogenic differentiation was confirmed by biochemical and molecular assays. The results indicate that the hWJ-MSCs infiltrated through the aligned porous network of the scaffold, proliferated well when cultured in the expansion medium, and differentiated into osteogenic lineage when cultured in the differentiation medium.Item Mesenchymal Stem Cell-Derived Extracellular Vesicles in the Management of COVID19-Associated Lung Injury: A Review on Publications, Clinical Trials and Patent Landscape(. Tissue Engineering and Regenerative Medicine, 2022-08) Anand, Krishnan; Muthusamy, S; Fernandez, FB; Kasoju, NThe unprecedented COVID-19 pandemic situation forced the scientific community to explore all the possibilities from various fields, and so far we have seen a lot of surprises, eureka moments and disappointments. One of the approaches from the cellular therapists was exploiting the immunomodulatory and regenerative potential of mesenchymal stromal cells (MSCs), more so of MSC-derived extracellular vesicles (EVs)-particularly exosomes, in order to alleviate the cytokine storm and regenerate the damaged lung tissues. Unlike MSCs, the EVs are easier to store, deliver, and are previously shown to be as effective as MSCs, yet less immunogenic. These features attracted the attention of many and thus led to a tremendous increase in publications, clinical trials and patent applications. This review presents the current landscape of the field and highlights some interesting findings on MSC-derived EVs in the context of COVID-19, including in silico, in vitro, in vivo and case reports. The data strongly suggests the potential of MSC-derived EVs as a therapeutic regime for the management of acute lung injury and associated complications in COVID-19 and beyond.Item Optically Clear Silk Fibroin Films with Tunable Properties for Potential Corneal Tissue Engineering Applications: A Process–Property–Function Relationship Study(ACS Omega, 2022-08) Beena, M; Ameer, JM; Kasoju, NOwing to the shortage of donor corneas and issues associated with conventional corneal transplantation, corneal tissue engineering has emerged as a promising therapeutic alternative. Biocompatibility and other attractive features make silk fibroin a biomaterial of choice for corneal tissue engineering applications. The current study presents three modes of silk fibroin film fabrication by solvent casting with popular solvents, viz. aqueous (aq), formic acid (FA), and hexafluoroisopropanol (HFIP), followed by three standard modes of postfabrication annealing with water vapor, methanol vapor, and steam, and systematic characterization studies including corneal cell culture in vitro. The results indicated that silk fibroin films made from aq, FA, and HFIP solvents had surface roughness (Rq) of 1.39, 0.32, and 0.13, contact angles of 73°, 85°, and 89°, water uptake% of 58, 29, and 27%, swelling ratios of 1.58, 1.3, and 1.28, and water vapor transmission% of 39, 26, and 22%, respectively. The degradation rate was in the order of aq > HF > FA, whereas the tensile strength was in the order of aq < HF < FA. Further, the results of the annealing process indicated notable changes in morpho-topographical, physical, degradation, and tensile properties. However, the films showed no detectable changes in chemical composition and remained optically clear with >90% transmission in the visible range, irrespective of fabrication and postfabrication processing conditions. The films were noncytotoxic against L929 cells and were cytocompatible with rabbit cornea-derived SIRC cells in vitro. The study demonstrated the potential of fine-tuning various properties of silk fibroin films by varying the fabrication and postfabrication processing conditions.Item Strategies to tune electrospun scaffold porosity for effective cell response in tissue engineering(J. Funct. Biomater, 2019-07) Ameer, JM; Anilkumar, PR; Kasoju, NTissue engineering aims to develop artificial human tissues by culturing cells on a scaffold in the presence of biochemical cues. Properties of scaffold such as architecture and composition highly influence the overall cell response. Electrospinning has emerged as one of the most affordable, versatile, and successful approaches to develop nonwoven nano/microscale fibrous scaffolds whose structural features resemble that of the native extracellular matrix. However, dense packing of the fibers leads to small-sized pores which obstruct cell infiltration and therefore is a major limitation for their use in tissue engineering applications. To this end, a variety of approaches have been investigated to enhance the pore properties of the electrospun scaffolds. In this review, we collect state-of-the-art modification methods and summarize them into six classes as follows: approaches focused on optimization of packing density by (a) conventional setup, (b) sequential or co-electrospinning setups, (c) involving sacrificial elements, (d) using special collectors, (e) post-production processing, and (f) other specialized methods. Overall, this review covers historical as well as latest methodologies in the field and therefore acts as a quick reference for those interested in electrospinning matrices for tissue engineering and beyondItem A versatile approach for temporary storage and shipping of in vitro cultured cells, cell sheets and tissue engineered constructs – a preliminary report(Engineered Regeneration, 2022-09) Anju, MS; Athira, RK; Ramesh Babu, V; Anil Kumar, PR; Kasoju, NTemporary storage/ shipping of cell/ tissue engineering products from bench to bedside is a key aspect of regenerative medicine. The current proof-of-concept study presents a multipurpose device for temporary storage/ shipping of cell culture dishes containing cell/ tissue constructs. The device, made with readily available raw materials, contains three elements viz. a specialized lid, polymeric plates having grooves and a set of nuts and bolts. As part of the performance evaluation, the device was first subjected to a simulated storage/ shipping process, wherein the leak-proof and aseptic containment of the contents was demonstrated. Subsequently, the setup was used for temporary storage/ shipping of dishes having (a) L929 cell monolayers cultured on treated surfaces, (b) SIRC, HaCaT and A549 cell sheets cultured on thermo-responsive surfaces, (c) HOS-cell encapsulated agar gels and (d) HOS-cell seeded silk fibroin mats. The results showed that the health of cell monolayers/ cell sheets/ tissue constructs after the process was comparable to that before the process. The device was scalable, simple to handle, can be made for a single or multi-use purpose, and can be resizable to load other culture vessels. The design of the storage/ shipping device described in this report thus offers versatile features and applications.