Browsing by Author "Kesavadas, Chandrasekhran"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Clinical utility of susceptibility-weighted imaging in vascular diseases of the brain(NEUROLOGY INDIA, 2010)Susceptibility-weighted imaging (SWI) is a rapidly evolving technique that utilizes both the magnitude and phase information to obtain valuable information about susceptibility changes between tissues. SWI is very sensitive to the paramagnetic effects of deoxyhemoglobin. SWI plays an important role in the diagnostic evaluation and management of acute stroke. In addition, it also plays an important role in the imaging of patients with chronic arterial occlusion and in understanding the effects of chronic infarction, like incomplete infarction and cortical laminar necrosis. The hemodynamic status and oxygen extraction fraction can also be evaluated. SWI is useful in evaluating cerebral venous sinus thrombosis by demonstrating the hemorrhagic venous infarction and thrombus in the sinus and the cortical veins, as well as secondary phenomena like venous stasis in the form of engorged cortical and transmedullary veins and collateral slow flow. Low-flow vascular malformations that are not visualized well on conventional sequences are depicted in exquisite detail along with the venous components on SWI. SWI is used for evaluating cavernomas, developmental venous anomalies, telangiactasias, dural arteriovenous fistulas and the various components of arteriovenous malformations. It has also evolved as a noninvasive technique for evaluating various anomalies of the venous system without administering contrast. Vasculopathies and vasculitis are associated with cerebral microbleeds which are detected on SWI. On the basis of the additional information provided by SWI, it can be included in the routine brain imaging protocol.Item Susceptibility weighted imaging in the diagnostic evaluation of patients with intractable epilepsy(EPILEPSIA, 2009)Aim: Dedicated magnetic resonance imaging (MRI) protocol can diagnose epileptogenic abnormalities in patients with intractable epilepsy. However, it is not sufficiently sensitive to detect small calcified lesions that may result from infections, tumors, or vascular malformations. This study aims to study the impact of the addition of T2*gradient echo/susceptibility weighted imaging (T2*GRE/SWI) sequence to a dedicated MRI protocol.Method: One hundred thirty-seven patients with intractable epilepsy underwent MRI using conventional epilepsy protocol with addition of T2*GRE/SWI sequence. Comparison of the images with and without these sequences was done for detection of calcified abnormalities/vascular abnormalities. In patients with calcified lesions, MRI findings were correlated either with histopathology or computerized tomography (CT) to confirm the presence of calcification.Results: In 16 patients the sequence gave additional information compared to conventional imaging protocol. The sequence helped in better characterization of lesions in all patients. In three patients it helped in detecting the lesion and in another three it appeared useful as it best characterized the lesions. Additional lesions were detected in two patients with old calcified granulomas. Important additional information was supplied in four patients, whereas in the remaining patients lesion conspicuity was increased.Conclusion: T2*GRE/SWI sequence should form part of routine epilepsy protocol as it increases sensitivity by detecting occult calcified lesions or vascular malformations that may be responsible for the patient's seizures. This is especially important in patients from developing countries who have post-infective calcified lesions responsible for seizures and who undergo only MRI as the imaging modality for intractable seizures.Item Teaching NeuroImages: MRI in fibrodysplasia ossificans progressiva.(Neurology, 2010)