Browsing by Author "Komath, Manoj"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Fully injectable calcium phosphate cement--a promise to dentistry.(Indian journal of dental research : official publication of Indian Society for Dental Research, 2004)Calcium phosphate cements (CPC) are self setting and biocompatible bone substitute materials with potential applications in dentistry. However, its clinical use has been challenged by poor rheological properties. A novel formulation of CPC has been developed, which gives a fully injectable and cohesive paste. This work investigates the suitability of the new "fully injectable calcium phosphate cement" (FI-CPC) for dental applications. The cementing properties, material characteristics, and the rheological properties were tested using a battery of material characteristics methods. The biocompatibility was also evaluated as per ISO 7405. The setting time (20 min) and compressive strength (>11 Mpa) of FI-CPC satisfy the clinical requirements. It underwent setting without any exothermic reaction, keeping good dimensional stability. The cement paste could be extruded through a 18-gauge needle, easily and fully. It showed excellent cohesion when immersed in water. FI-CPC was seen to set into a micro-porous mass of hydroxyapatite, the mineral part of human dentin. It showed good attachment to dentin walls, when filled in tooth perforations. FI-CPC was found non-toxic, non-allergic, non-pyrogenic, and soft-tissue compatible. The study shows that FI-CPC provides a self setting bio-compatible paste with excellent rheological properties for surgical applications. The set cement provides good and stable sealing. The osteoconductive property is an added advantage. FI-CPC proves to be an ideal material for endodontic sealing/filling and periodontic repair.Item Laser surface modification of titanium substrate for pulsed laser deposition of highly adherent hydroxyapatite(JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011)Biomedical implant devices made out of titanium and its alloys are benefited by a modified surface or a bioactive coating to enhance bone bonding ability and to function effectively in vivo for the intended period of time. In this respect hydroxyapatite coating developed through pulsed laser deposition is a promising approach. Since the success of the bioactive ceramic coated implant depends mainly on the substrate-coating strength; an attempt has been made to produce micro patterned surface structure on titanium substrate for adherent hydroxyapatite coating. A pulsed Nd-YAG laser beam (355 nm) with 10 Hz repetition rate was used for surface treatment of titanium as well as hydroxyapatite deposition. The unfocussed laser beam was used to modify the substrate surface with 500-18,000 laser pulses while keeping the polished substrate in water. Hydroxyapatite deposition was done in a vacuum deposition chamber at 400A degrees C with the focused laser beam under 1 x 10(-3) mbar oxygen pressure. Deposits were analyzed to understand the physico-chemical, morphological and mechanical characteristics. The obtained substrate and coating surface morphology indicates that laser treatment method can provide controlled micro-topography. Scratch test analysis and microindentation hardness values of coating on laser treated substrate indicate higher mechanical adhesion with respect to coatings on untreated substrates.Item Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition(JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012)Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and alpha-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.Item Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer(JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011)Pulsed laser deposition (PLD) has been used to deposit hydroxyapatite (HA) ceramic over titanium substrate with an interlayer of titania. PLD has been identified as a potential candidate for bioceramic coatings over metallic substrates to be used as orthopedic and dental implants because of better process control and preservation of phase identity of the coating component. However, direct deposition of hydroxyapatite on titanium at elevated temperature results in the formation of natural oxide layer along with some perovskites like calcium titanate at the interface. This leads to easy debonding of ceramic layer from the metal and thereby affecting the adhesion strength. In the present study, adherent and stable HA coating over Ti6Al4V was achieved with the help of an interlayer of titania. The interlayer was made to a submicron level and HA was deposited consecutively to a thickness of around one micron by exposing to laser ablation at a substrate temperature of 400A degrees C. The deposited phase was identified to be phase pure HA by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and inductively coupled plasma spectrometry. The mechanical behavior of coating evaluated by scratch test indicates that the adhesion strength of HA coating was improved with the presence of titania interlayer.