Browsing by Author "Kumary, T V"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering.(Biomedical materials (Bristol, England), 2007)Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.Item Rapid and complete cellularization of hydroxyapatite for bone tissue engineering.(Acta biomaterialia, 2005)Using a tissue construct generated by cells in a scaffold in reconstructive surgery, as a substitute for autografts, is still challenging. Routine methods of incorporating cells into scaffolds are either passive, i.e. by gravity, or forced, as in a bioreactor. Extensive use of these methods is obstructed by tissue formation around the scaffold, hindrance in cell penetration and time required for cell coverage within the scaffold. In this study, human osteoblast cells as cell sheet structures were seeded to porous and dense hydroxyapatite with the hypothesis that preservation of native extracellular structures and cell-cell contacts would facilitate the cellularization process. Cellularization was assessed by fluorescence, confocal and scanning electron microscopy at intervals of 1 h, 2 days and 7 days. Cell patches with intact cell-cell and cell-extra cellular matrix contact attached and adhered on a scaffold within 1 h. The patches formed a monolayer within 2 days and complete cellularization of the scaffold was attained in 7 days. Cell viability, proliferation and function were assessed to understand the application of cell patch transfer to bone substitute. This novel approach for application in bone tissue engineering was successful in uniform distribution of intact osteoblast cell sheet structures on to bone substitute materials for rapid and complete cellularization without altering material characteristics.