Browsing by Author "Mony, MP"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Controlled cross-linking of porcine cholecyst extracellular matrix for preparing tissue engineering scaffold. Biomed Mater Res. part B(Applied Biomaterials, 2019-08) Mony, MP; Anilkumar, TVTreatment with cross‐linking agents for stabilizing biomolecules is an integral step during the preparation of many extracellular matrix‐based tissue engineering scaffolds from mammalian organs. However, excess cross‐linking may cause nonavailability of biomolecules and consequent deterioration of bioinductive properties of the scaffold. The present study considered controlling the extent of cross‐linking in a porcine cholecyst extracellular matrix scaffold prepared by a nonenzymatic and nondetergent method, by ex situ incubation of the source organ in varying concentrations of neutral buffered formaldehyde (10, 4, 1 or 0%; v/v) for in situ cross‐linking of biomolecules. Reduction of the formaldehyde concentration resulted in an increase in the extent of biodegradation and a decrease in the compactness of the mesh‐like surface microarchitecture of the scaffold. Retention of collagen was maximum when treated with 10% neutral buffered formaldehyde without any variation in the content of elastin and sulphated glycosaminoglycans. Although there was a reduction in the quantity of growth factors following the cross‐linking, fibroblasts remained viable on the scaffolds. The retention of major biomolecule was maximum and autodigestion was minimum in the scaffold prepared by the ex situ treatment of cholecyst in 10% neutral buffered formalin and found suitable for preparing the tissue engineering scaffold.Item Surface Modification of Polypropylene Mesh with a Porcine Cholecystic Extracellular Matrix Hydrogel for Mitigating Host Tissue Reaction(. ACS Applied Bio Materials, 2021-03) Raj, R; Shenoy, SJ; Mony, MP; Pratheesh, KV; Nair, RS; Geetha, CS; Sobhan, PK; Purnima, C; Anilkumar, TVPolypropylene (PP) meshes are widely used for repairing skeletal muscle defects like abdominal hernia despite the chances of undesirable pro-inflammatory tissue reactions that demand revision surgeries in about 45% of cases. Attempts have been made to address the problem by modifying the mesh surface and architecture. These procedures have yielded only incremental improvements in the management of overall postoperative complications, and the search for a clinically viable therapeutic strategy continues. This study deployed a tissue engineering approach for mitigating PP-induced adverse tissue reaction by dip-coating the mesh with a hydrogel formulation of the porcine cholecystic extracellular matrix (CECM). The biomaterial properties of the CECM hydrogel-coated PP (C-PP) meshes were studied and their biocompatibility was evaluated by in vitro and in vivo tests based on ISO standards. Further, the nature of tissue reactions induced by the hydrogel-coated mesh and a commercial PP hernia repair graft was compared in a rat model of partial-thickness abdominal wall defect. Histomorphologically, in comparison with the PP graft-induced tissue reaction, C-PP caused a favorable graft-acceptance response characterized by reduced numbers of pro-inflammatory M1 macrophages and cytotoxic lymphocytes. Remarkably, the differential inflammatory response of the C-PP graft-assisted healing was associated with a fibrotic reaction predominated by deposition of type I collagen rather than type III collagen, as desired during skeletal muscle repair. It was concluded that the CECM hydrogel is a potential biomaterial for surface modification of polymeric biomedical devices.