Browsing by Author "Neethu, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chitra Disinfection Gateway for the Management of COVID 19 in Public Entry Places(Transactions of the Indian National Academy of Engineering, 2020-07) Krishnan, J; Subhash, NN; Muraleedharan, CV; Mohanan, PV; Nandakumar, M; Neethu, S; Rethnagireeshwar, RChitra Disinfection Gateway is meant for the decontamination of personnel entering a cleaner private space from a public space. This is equipped with an arrangement for generating hydrogen peroxide mist and ultraviolet rays. Hydrogen peroxide mist will decontaminate clothes, hands and the bags a person carries. The ultraviolet system will decontaminate the chamber once the person has moved out. The system is controlled electronically by sensors and actuators. The sensors fixed in the chamber detect the entry of a person and initiates the hydrogen peroxide atomization process. The person is required to walk through the chamber. When the person exits the chamber, the system will put off the hydrogen peroxide atomization system and will turn on the UV lamp inside the chamber to decontaminate it. The ultraviolet system will be ON for a predefined time and after the process, the next person can enter the walkway. The whole process takes a maximum of 40 s. The safety and efficacy of the system have been validated experimentally through both in vivo and in vitro studies.Item Studies on the Condensation of Depolymerized Chitosans With DNA for Preparing Chitosan-DNA Nanoparticles for Gene Delivery Applications(JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2009) Morris, VB; Neethu, S; Abraham, TE; Pillai, CKS; Sharma, CPHigh molecular weight chitosan (CS) was depolymerized by oxidative degradation with NaNO(2) at room temperature to get 11 samples of CS derivatives of varying molecular weights with a view to assessing their effective molecular weight range for gene delivery applications. Viscosity studies indicated that the molecular weight of the depolymerized CS was proportional to the CS/NaNO(2) ratio. The condensation behavior of DNA/CS complexes at various charge ratios was studied using UV spectroscopy, FTIR, CD, SEM, and AFM. The results indicated that CSs having very low molecular weights and high charge density exhibited strong binding affinity to DNA compared to high molecular weight CSs. However, the very low molecular weight (1.9-7.7 kDa) CSs were found to form aggregates easily even at very low charge ratios. On the other hand, CSs having medium molecular weight (49-51 kDa) and high degree of deacetylation (DD) gave stable uniform-sized nanoparticles. Biological studies carried out with the spherical nano-sized polyplexes formed between CS of 50 kDa (DD of 94%) and pEGFP plasmid DNA at NIP ratio of 5.0 showed excellent gene transfection efficiency at pH 6.5 in HeLa cells without cytotoxicity indicating their potential as gene delivery carriers. (C) 2008 Wiley Periodicals. Inc. J Biomed Mater Res Part 13: Appl Biomater 89B: 282-292,2009