Browsing by Author "Revi, D"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Biocompatibility and 1.923 Immunophenotypic Characterization of a Porcine Cholecyst-derived Scaffold Implanted in Rats(Toxicol Pathol., 2015-02) Muhamed, J; Revi, D; Rajan, A; Geetha, S; Anilkumar, TVComparative histomorphological assessment of local response to implanted reference biomaterial, also called biocompatibility testing/evaluation, in an appropriate animal model is a widely practiced safety evaluation procedure performed on biomaterials before clinical use. Standardized protocols and procedures, originally designed for testing synthetic materials, available for the testing/evaluation do not account for the immunogenic potential of a candidate biomaterial. Therefore, it is appropriate to supplement the routine biocompatibility test reports with adjunct data that may provide insight into the immunogenic potential of candidate biomaterials, especially when testing biomaterials that are derived from mammalian sources. This article presents expanded safety evaluation data of a porcine cholecyst–derived scaffold (CDS) intended as a xenogeneic graft. The biocompatibility was tested in rat subcutaneous model in comparison with a reference material and the CDS was found biocompatible. However, when studied by immunohistochemistry and real-time reverse transcription polymerase chain reaction for the number and/or polarization of M1 macrophage, M2 macrophage, cytotoxic T-cell, helper T cell, TH1 cell, and TH2 cell, the CDS appeared to induce a differential local immunopathological tissue reaction despite the similarity in biocompatibility with the reference material. The adjunct data collected were useful for objectively assessing the safety of CDS as a xenograft.Item Biocompatibility and Immunophenotypic Characterization of a Porcine Cholecyst-derived Scaffold Implanted in Rats(TOXICOLOGIC PATHOLOGY, 2015) Muhamed, J; Revi, D; Rajan, A; Geetha, S; Anilkumar, TVComparative histomorphological assessment of local response to implanted reference biomaterial, also called biocompatibility testing/evaluation, in an appropriate animal model is a widely practiced safety evaluation procedure performed on biomaterials before clinical use. Standardized protocols and procedures, originally designed for testing synthetic materials, available for the testing/evaluation do not account for the immunogenic potential of a candidate biomaterial. Therefore, it is appropriate to supplement the routine biocompatibility test reports with adjunct data that may provide insight into the immunogenic potential of candidate biomaterials, especially when testing biomaterials that are derived from mammalian sources. This article presents expanded safety evaluation data of a porcine cholecyst-derived scaffold (CDS) intended as a xenogeneic graft. The biocompatibility was tested in rat subcutaneous model in comparison with a reference material and the CDS was found biocompatible. However, when studied by immunohistochemistry and real-time reverse transcription polymerase chain reaction for the number and/or polarization of M1 macrophage, M2 macrophage, cytotoxic T-cell, helper T cell, TH1 cell, and TH2 cell, the CDS appeared to induce a differential local immunopathological tissue reaction despite the similarity in biocompatibility with the reference material. The adjunct data collected were useful for objectively assessing the safety of CDS as a xenograft.Item Biomaterial properties of cholecyst-derived scaffold recovered by a non-detergent/enzymatic method(JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014) Anilkumar, TV; Vineetha, VP; Revi, D; Muhamed, J; Rajan, AIsolation procedures for the recovery of extracellular matrices (ECMs) from animal organs/tissues that are useful in regenerative medicine involve multiple sequential steps/stages including collection of the source organ at slaughter, their transportation to laboratory, decellularization, decontamination, stabilization, and sterilization. Most of these steps require extensive use of chemicals/reagents/enzymes which may also adversely affect the quality of the scaffold. With an effort to minimize the use of chemicals/reagents/enzymes, while extracting biomaterial-grade ECM from porcine cholecyst (gall bladder), we performed preisolation ex situ incubation of the organ in a stabilizing agent that also caused in situ crosslinking of tissue-components and delaminated the collagen-rich ECM from the tissue-layer beneath the mucosa. The physical, chemical, and biological properties of the isolated scaffolds were similar to that of a commercially available porcine small intestinal submucosa. The cholecyst-derived scaffold not only satisfied preclinical safety-test procedures such as cytotoxicity, local response, and endotoxin load but also showed the potential to promote healing of full-thickness skin wound in a rabbit model. The procedure was also suitable for isolating scaffolds from other hollow organs such as jejunum and urinary bladder. It was concluded that enzyme/detergent treatment may be an avoidable step while isolating biomaterial-grade scaffolds from hollow organs. (C) 2014 Wiley Periodicals, Inc.Item Chitosan scaffold co-cultured with keratinocyte and fibroblast heals full thickness skin wounds in rabbit(JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014) Revi, D; Paul, W; Anilkumar, TV; Sharma, CPThis study evaluated the modulatory effect of chitosan sponge co-cultured with keratinocyte and fibroblast on wound healing. Dermal fibroblasts and keratinocyte isolated from rabbit skin were co-cultured on chitosan sponge, to fabricate cell-loaded chitosan tissue engineered construct. Full thickness excision wounds created on the rabbit dorsum were treated with three types of graft materials - a noncellular chitosan graft, homologous keratinocyte fibroblast loaded chitosan, and a commercial product. Postgraft skin-wound samples were examined histomorphologically at 7th, 14th, and 28th day after staining with hematoxylin and eosin, picrosirius red and/or immunohistochemistry. Wound healing parameters considered were the extent of re-epithelialization, collagen deposition, and neoangiogenesis. The number of proliferating cells, vimentin positive cells, and alpha smooth muscle actin cells were also quantified. The histology results suggested that the grafts aided wound healing but, the cell-loaded graft induced a differential pattern of healing and had lower scarring tendency. The cell-loaded tissue construct may be useful as a therapeutic graft for treating wounds where there is a total loss of tissue and cells as in burn injury. (C) 2013 Wiley Periodicals, Inc.Item Comparative local immunogenic potential of scaffolds prepared from porcine cholecyst, jejunum, and urinary bladder in rat subcutaneous model(JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2015) Muhamed, J; Revi, D; Rajan, A; Anilkumar, TVExtracellular matrices isolated from several mammalian organs/tissues have found several clinical uses as xenografts or implants. However, they may cause complications because of adverse immunologic reactions. Scaffolds that promote favorable graft-acceptance reaction are preferred for fabricating xenografts. The objective of this study was to evaluate the immunogenic potential of a porcine cholecyst-derived scaffold (CDS), prepared by a non-detergent/enzymatic method, in comparison with jejunum and urinary bladder-derived scaffolds in a rat subcutaneous model. Key graft-rejection/acceptance reaction was evaluated at the site of implantation by studying the occurrence and/or function of immunocompetent cells in the tissue reaction. There was differential occurrence of M1-macrophage, M2-macrophage, T-helper cells, T-cytotoxic cells, B-cells, and mast cells in the tissue reaction and the CDS attracted few cells compared with other scaffolds. Real-time polymerase chain reaction for evaluating mRNA of functional markers like inducible nitric oxide synthase (M1 macrophage), arginase 1 (M2 macrophage), interferon gamma (TH1 lymphocytes), and interlukin-4 (TH2 lymphocytes) suggested that the CDS, compared with the scaffolds prepared from small intestine and urinary bladder, elicited M2 macrophage and TH2 lymphocyte polarization that are congenial graft-acceptance reactions. The results indicated that CDS has less immunogenic potential compared with the scaffolds prepared from jejunum and urinary bladder when used as subcutaneous graft in rats. It was concluded that CDS is a promising animal-derived xenograft for biomedical application. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1302-1311, 2015.Item Fibroblast-loaded cholecyst-derived scaffold induces faster healing of full thickness burn wound in rabbit(JOURNAL OF BIOMATERIALS APPLICATIONS, 2016) Revi, D; Geetha, C; Thekkuveettil, A; Anilkumar, TVGraft-assisted healing is often proposed for clinical management of large-sized third-degree cutaneous burn wounds. Skin-graft substitutes prepared by loading appropriate cell types on suitable scaffolds have been found successful. We have previously shown that cholecyst-derived scaffold prepared by a non-detergent/enzymatic method can be used as skin-graft substitute for promoting healing of full thickness excision wounds in rabbit. This article examines the use of this scaffold for preparing bio-artificial grafts by loading homologous fibroblasts. The healing potential was evaluated in a rabbit model of full thickness skin-burn wound. The healing process was evaluated by gross morphology evaluation and histomorphology evaluation at 7, 14 and 28 days of healing. Ex vivo imaging of the wounded tissue was performed and it was found that the loaded fibroblasts remained viable at least for 14 days in the healing wound. By the first week, re-epithelialisation was evident in all animals treated with the cell-loaded graft. Histomorphological wound healing parameters such as the quickness of re-epithelialisation, the nature of collagen deposition and the extent of neo-vascularisation indicated that cell-loaded grafts promoted faster healing of the wounds. Results of immunohistochemistry indicated a parallel change in the number of proliferating cells and myofibroblast in the healing tissue. Although the pathophysiology of the healing reaction was not established, the observations suggested that homologus fibroblast-loaded cholecyst-derived scaffold promoted faster healing of third-degree wounds in rabbit model by modulating myofibroblast response. It was concluded that cholecyst-derived scaffold prepared by the non-detergent/enzymatic method is a potential scaffold for fabricating bioartificial skin grafts.Item Phenotypic Modulation of Cell Types around Implanted Polyethylene Terephthalate Fabric in Rabbit Muscle(TOXICOLOGIC PATHOLOGY, 2013) Muhamed, J; Revi, D; Joseph, R; Anilkumar, TWhereas the nature of healing reaction in skeletal muscle following implantation of biomaterial has been extensively studied, the extent of variation in cell phenotypes is poorly known. Here, we studied the phenotypic alteration of cell types following injury in skeletal muscle of rabbits implanted with a commonly used biomaterial, polyethylene terephthalate (PET) fabric. Following implantation, histomorphological features were studied after 1, 4, and 12 weeks. Routine objective histomorphological evaluation was supplemented with histochemistry for collagen and immunohistochemistry for proliferating cell nuclear antigen (PCNA), CD34, vimentin, and alpha smooth muscle actin (alpha-SMA). The extent of reaction was quantified. The foreign body giant cells were found to comprise subpopulations, based on the variation in vimentin detectability or the presence of differentially capable proliferating nuclei (PCNA positive). Many rhabdomyocytes adjacent to the implant were PCNA-positive and some of them showed CD34 positivity. Often, the rhabdomyocytes very near to implanted PET fabric assumed a myofibroblast phenotype as evidenced by vimentin and/or alpha-SMA positivity at immunohistochemistry. Overall, the results suggested a phenotypic alteration of native cell types following implantation of PET fabric in rabbit skeletal muscle. Quantification of such cell types at the tissue-material interphase in relation to the deposition of collagen may be desirable during safety evaluation of biomaterials by histomorphology.Item Wound healing potential of scaffolds prepared from porcine jejunum and urinary bladder by a non-detergent/enzymatic method(JOURNAL OF BIOMATERIALS APPLICATIONS, 2015) Revi, D; Vineetha, VP; Muhamed, J; Surendran, GC; Rajan, A; Kumary, TV; Anilkumar, TVScaffolds prepared using extracellular matrices of mammalian organs/tissues, when used as grafts, have wound healing potential. This paper evaluated the physical properties and invivo wound healing potential of jejunum-derived scaffold (JDS) and urinary bladder-derived scaffold (UDS) of porcine origin prepared by a non-detergent/enzymatic method. The former had higher flexural rigidity and suture retention strength compared to the latter, but both of them had the essential flexural rigidity and suture retention strength required for skin grafts. Full thickness skin-wounds on rabbit dorsum were treated with these scaffolds and the wound healing ability was compared by studying histomorphology parameters such as re-epithelialisation, collagen deposition, angiogenesis, proliferation of cells, mesenchymal cell infiltration and myofibroblast response. The extent of these reactions was assessed using histomorphometry. The results indicated that both grafts initiated healing faster than those wounds without any graft, as evidenced by the extent of cell proliferation and mesenchymal cell infiltration. The myofibroblast response persisted longer in the non-graft assisted wound healing reaction compared to the healing in the graft assisted wounds. Moreover, the JDS induced higher cell proliferation and greater angiogenesis than UDS probably indicating better healing by the former. The results suggested that JDS and UDS prepared by non-detergent/enzymatic method have potential clinical applications.Item Wound healing potential of scaffolds prepared from porcine jejunum and urinary bladder by a non-detergent/enzymatic method.(J Biomater Appl., 2015-02) Revi, D; Vineetha, VP; Muhamed, J; Surendran, GC; Rajan, A; Kumary, TV; Anilkumar, TVScaffolds prepared using extracellular matrices of mammalian organs/tissues, when used as grafts, have wound healing potential. This paper evaluated the physical properties and in vivo wound healing potential of jejunum-derived scaffold (JDS) and urinary bladder-derived scaffold (UDS) of porcine origin prepared by a non-detergent/enzymatic method. The former had higher flexural rigidity and suture retention strength compared to the latter, but both of them had the essential flexural rigidity and suture retention strength required for skin grafts. Full thickness skin-wounds on rabbit dorsum were treated with these scaffolds and the wound healing ability was compared by studying histomorphology parameters such as re-epithelialisation, collagen deposition, angiogenesis, proliferation of cells, mesenchymal cell infiltration and myofibroblast response. The extent of these reactions was assessed using histomorphometry. The results indicated that both grafts initiated healing faster than those wounds without any graft, as evidenced by the extent of cell proliferation and mesenchymal cell infiltration. The myofibroblast response persisted longer in the non-graft assisted wound healing reaction compared to the healing in the graft assisted wounds. Moreover, the JDS induced higher cell proliferation and greater angiogenesis than UDS probably indicating better healing by the former. The results suggested that JDS and UDS prepared by non-detergent/enzymatic method have potential clinical applications.