Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • SCTIMST
  • Annual Reports
  • Patents
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Samanta, A"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Item
    Cyclometalated Ir(III) complex as lysosome targeted photodynamic therapeutic agent for integrated imaging and therapy in cancer cells.
    (Chemistry - A European Journal, 2018-06) Sudheesh, KV; Jayaram, PS; Samanta, A; Kochan, S; Bejoymohandas, KS; Jayasree, RS; Ajayaghosh, A
    Organelle targeted photosensitizers (PSs) having luminescence properties are potential theranostic agents for simultaneous luminescence imaging and photodynamic therapy. Herein, we report a water soluble luminescent cyclometalated Ir(III) complex, Ir-Bp-Ly as lysosome targeted theranostic probe. Ir-Bp-Ly exhibits exceptional photophysical properties of good triplet state quantum yield (0.90), singlet oxygen generation quantum yield (0.71 at pH 4) and long lifetime (1.47 µs). Interestingly, Ir-Bp-Ly localized mostly in the lysosome because of the presence of morpholine units, suggesting its potential as a lyso-tracker. Ir-Bp-Ly displayed notable PDT effect in C6 glioma cells, as these PS efficiently generated ROS owing to the close proximity energy levels between triplet energy states of Ir-Bp-Ly and molecular oxygen (3O2). The mechanism of cell death was studied through caspase-3/7 and flow cytometry analysis that clearly established the apoptotic pathway.
  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback