Browsing by Author "Sangeetha, VP"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Antineoplastic effects of cassava-cyanide extract on human glioblastoma (LN229) cells(Toxicon, 2023-07) Sreejith, S; Joseph, T; Sangeetha, VP; Vandana, U; Joseph, X; Jayaprakas, CA; Mohanan, PVSeveral natural compounds reduce tumour cell growth and metastasis by inducing programmed cell death. Cassava (Manihot esculenta Crantz) contains cyanogenic glycosides such as, linamarin and lotaustralin, can be enzymatically cleaved by linamarase to release hydrogen cyanide (HCN), which can have therapeutic benefits against hypertension, asthma, and cancer. We have developed a technology for isolating bio-active principles from cassava leaves.The present study is designed to analyze the cytotoxic effect of cassava cyanide extract (CCE) against human glioblastoma cells (LN229). The treatment of CCE demonstrated a dose dependent toxicity on glioblastoma cells. At higher concentration tested, the CCE (400 μg/mL) was found to be cytotoxic, reducing the cell viability to 14.07 ± 2.15% by negatively influencing the mitochondrial activity, and lysosomal and cytoskeletal integrity. Coomassie's brilliant blue staining confirmed cells' morphological aberration after 24 h of treatment with CCE. Moreover, DCFH-DA assay and Griess reagent showed an increase in ROS but a decrease in RNS production at a concentration of CCE. Flow cytometry analysis revealed that CCE interfered with G0/G1, S, and G2/M stages of the cell cycle of glioblastoma, and Annexin/PI staining indicated a dose-dependent increase in cell death, confirming the toxic nature of CCE on LN229 cells. These findings suggest that cassava cyanide extract has potential as an antineoplastic agent against glioblastoma cells, which is an aggressive and difficult-to-treat type of brain cancer. However, it is important to note that the study was conducted in vitro, and further research is necessary to assess the safety and efficacy of CCE in vivo. Additionally, it is essential to establish the optimal dose and potential side effects before considering its use as a therapeutic agent.Item Development of a 3D multifunctional collagen scaffold impregnated with peptide LL-37 for vascularised bone tissue regeneration(Int J Pharm., 2024-01) Megha, KB; Syama, S; Sangeetha, VP; Vandana, U; Oyane, A; Mohanan, PVBone is a highly dynamic connective tissue that provides structural support, locomotion and acts as a shield for many vital organs from damage. Bone inherits the ability to heal after non-severe injury. In case of severe bone abnormalities due to trauma, infections, genetic disorders and tumors, there is a demand for a scaffold that can enhance bone formation and regenerate the lost bone tissue. In this study, a 3D collagen scaffold (CS) was functionalized and assessed under in vitro and in vivo conditions. For this, a collagen scaffold coated with hydroxyapatite (Ap-CS) was developed and loaded with a peptide LL-37. The physico-chemical characterisation confirmed the hydroxyapatite coating on the outer and inner surfaces of Ap-CS. In vitro studies confirmed that LL-37 loaded Ap-CS promotes osteogenic differentiation of human osteosarcoma cells without showing significant cytotoxicity. The efficacy of the LL-37 loaded Ap-CS for bone regeneration was evaluated at 4 and 12 weeks post-implantation by histopathological and micro-CT analysis in rabbit femur defect model. The implanted LL-37 loaded Ap-CS facilitated the new bone formation at 4 weeks compared with Ap-CS without LL-37. The LL-37 loaded Ap-CS incorporating apatite and peptide LL-37 would be useful as a multifunctional scaffold for bone tissue engineering.Item Effect of cyanide ions (CN-) extracted from cassava (Manihotesculenta Crantz) on Alveolar Epithelial Cells (A549 cells)(Toxicology, 2021-12) Joseph, T; Sreejith, S; Joseph, X; Sangeetha, VP; Prajitha, N; Vandana, U; Jayaprakas, CA; Mohanan, PVCassava (Manihotesculenta Crantz) is one of the most important root crops in tropical countries. It is a major source of cyanogenic glycosides viz. linamarin and lotaustralin, and these on breakdown liberate HCN and ketone. Cassava cyanide extract (CCE) from cassava leaves and tuber rinds were formulated as a biopesticide against certain borer insect pests of horticultural crops. Adenocarcinomic human alveolar basal epithelial cells (A549) were treated with three different concentrations (100, 200, 400 ppm) of CCE. The MTT and NRU assays showed dose-dependent cytotoxicity. The DCFH-DA assay does not show any free radical scavenging activity, whereas the NRR assay showed a reduction in the nitrile radicals with an increase in the concentration of the bioactive compound. A negative correlation was found between the concentration of the bioactive principles and mitochondrial and lysosomal functions. Various cellular assays demonstrated the cellular response of the CCE, and it was found that at higher concentration (400 ppm), the CCE exert a significant necrotic cell death rather than apoptosis. The results of the study indicated that the CCE have a remarkable tendency of anti-proliferative ability.Item Mechanism of action and cellular responses of HEK293 cells on challenge with zwitterionic carbon dots(Colloids and Surfaces B: Biointerfaces, 2021-06) Sangeetha, VP; Smriti, S; Solanki, PR; Mohanan, PVCarbon, an extremely versatile element has great demand in the field of nanoscience. Carbon-based nanostructures are exponentially increased due to its wide range of applications in biotechnological and environmental approaches; hence, its safety assessment is of greater concern. In the present study, high quantum yielding zwitterionic carbon dots were synthesized, characterized and its safety assessment at different concentration ranges (50–1600 μgmL−1) on HEK 293 cells was carried out. Cellular, mitochondrial, lysosomal integrity and ROS generation were assessed using specific fluorochromes.The key cellular event apoptosis was assessed by annexinpropidium iodide staining using imaging flow cytometry. Moreover, the mRNA levels of the apoptotic genes were determined by real-time PCR. The results revealed that the cell viability assays (MTT, NR) and mitochondrial membrane potential were altered on exposure to a higher concentration of zwitterionic CDs for 24 h. Also, annexinpropidiumiodidestaining exhibited an increased percentage of apoptotic cells upon exposure to zwitterionic CDs at higher concentrations. Further, apoptosis was confirmed by significantlyincreased expression of pro-apoptotic gene (Bax) together with decreased expression of Bcl-2/Bax ratio. Collectively, this study suggests that zwitterionic CDs induce apoptosis in HEK 293 at higher concentration and the safe range for its intended application is found to be 50−200 μg/mL.