Transforming COVID-19 testing data into actionable evidence for public health decision-making using epidemiological, spatiotemporal, and data-science methods

dc.contributor.authorBiju Soman
dc.date.accessioned2025-12-09T03:28:25Z
dc.date.available2025-12-09T03:28:25Z
dc.date.issued2025-12-09
dc.identifier.urihttps://dspace.sctimst.ac.in/handle/123456789/11696
dc.language.isoen
dc.publisherSCTIMST
dc.titleTransforming COVID-19 testing data into actionable evidence for public health decision-making using epidemiological, spatiotemporal, and data-science methods
dc.typeTechnical Report
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5450.pdf
Size:
34.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections