Effect of dextran coated ferrite nanoparticles on the antioxidant defense mechanism of mice brain

dc.contributor.authorSruthi, S
dc.contributor.authorMohanan, PV
dc.date.accessioned2015-05-07T04:14:23Z
dc.date.available2015-05-07T04:14:23Z
dc.date.issued2015-02
dc.description.abstractToxicity of magnetic nanoparticles is mainly due to their ability to produce reactive oxygen species. Oxidative defense mechanism gets up regulated in response to ROS. The current study estimate the antioxidant level of mice brain in response to single time exposure of in-house synthesized dextran coated ferrite nanoparticles (DFN) administered via intraperitonial (IP) injection. Animals were randomly divided into 3 groups and were sacrificed in 7days interval. Antioxidant levels in the brain tissue homogenate were measured using standard protocols and compared with the antioxidant levels of control animals. No marked change in the antioxidant level was observed in any of the experimental group. All the values obtained were comparable to that of control. During the entire course of study, all the animals appeared healthy and showed no signs of behavioral problems. The study concludes that the in-house synthesized DFN intended for biomedical application do not cause any oxidative damage in the mice brain and is safe to use for further applications.en_US
dc.identifier.citationSruthi S, Mohanan PV. Effect of dextran coated ferrite nanoparticles on the antioxidant defense mechanism of mice brain. Trends Biomat. Artif. Organs. 2014;20(4).en_US
dc.identifier.uri: http://www.biomaterials.org.in/ojs/index.php/tibao/article/view/583
dc.identifier.urihttps://dspace.sctimst.ac.in/handle/123456789/2390
dc.publisherTrends Biomat. Artif. Organs. 2014;20(4)en_US
dc.titleEffect of dextran coated ferrite nanoparticles on the antioxidant defense mechanism of mice brainen_US
dc.typeArticleen_US
Files
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections