Gold nanoparticles generated and stabilized by water soluble curcumin-polymer conjugate: Blood compatibility evaluation and targeted drug delivery onto cancer cells

No Thumbnail Available
Date
2012
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
JOURNAL OF COLLOID AND INTERFACE SCIENCE
Abstract
Curcumin (Cur) shows low anticancer activity in vivo due to its reduced systemic bioavailability stemmed from its poor aqueous solubility and instability. Suitably functionalized nanocarriers designed to empty the drug specifically at tumor sites can potentially enhance the antitumor activity of Cur. We devised a simple method for the fabrication of water soluble Cur conjugated gold nanoparticles to target various cancer cell lines. Cur was conjugated to hyaluronic acid (HA) to get a water soluble conjugate (HA-Cur). We generated gold nanoparticles (AuNPs) by reducing chloroauric acid using HA-Cur, which played the dual role of a reducing and stabilizing agent and subsequently anchored folate conjugated PEG. These entities were probed using different analytical techniques, assayed the blood compatibility and cytotoxicity. Their interaction with cancer cell lines (HeLa cells, glyoma cells and Caco 2 cells) was followed by flow cytometry and confocal microscopy. Blood-materials interactions studies showed that the nanoparticles are highly hemocompatible. Flow cytometry and confocal microscopy results showed significant cellular uptake and internalization of the particles by cells. HA-Cur@AuNPs exhibited more cytotoxicity comparing to free Cur. The strategy, we adopted here, resulted the formation blood compatible Cur conjugated AuNPs with enhanced targeting and improved efficacy. (C) 2011 Elsevier Inc. All rights reserved.
Description
Keywords
Citation
JOURNAL OF COLLOID AND INTERFACE SCIENCE. 368; ; 144-151
Collections