Fibrin-mediated endothelial cell adhesion to vascular biomaterials resists shear stress due to flow

No Thumbnail Available
Date
2002
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
Abstract
In vitro endothelial cell (EC) seeding onto biomaterials for blood-contacting applications can improve the blood compatibility of materials. Adhesive proteins adsorbed from serum that is supplemented with the culture medium intercede the initial cell adhesion and subsequent spreading on material surface during culture. Nevertheless, physical and chemical properties of vascular biomaterial surface fluctuate widely between materials resulting in dissimilarity in protein adsorption characteristics. Thus, a variation is expected in cell adhesion, growth and the ability of cell to resist shear stress when tissue engineering on to vascular biomaterials is attempted. This study was carried out with an objective to determine the significance of a matrix coating on cell adhesion and shear stress resistance when cells are cultured on materials such as polytetrafluoroethylene (PTFE, Teflon) and polyethyleneterephthalate (Dacron), ultra high molecular weight polyethylene (UHMWPE) and titanium (Ti), that are used for prosthetic devices. The study illustrates the distinction of EC attachment and proliferation between uncoated and matrix-coated surfaces. The cell attachment and proliferation on uncoated UHMWPE and titanium surfaces were not significantly different from matrix-coated surfaces. However, shear stress resistance of the cells grown on composite coated surfaces appeared superior compared to the cells grown on uncoated surface. On uncoated vascular graft materials, the cell adhesion was not supported by serum alone and proliferation was scanty as compared to matrix-coated surface. Therefore, coating of implant devices with a composite of adhesive proteins and growth factors can improve EC attachment and resistance of the cells to the forces of flow. (C) 2002 Kluwer Academic Publishers.
Description
Keywords
Biocompatibility
Citation
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE. 13; 8; 751-755
Collections