Nanohybrids of Magnetically Intercalated Optical Metamaterials for Magnetic Resonance/Raman Imaging and In Situ Chemodynamic/Photothermal Therapy

No Thumbnail Available
Date
2021-07
Journal Title
Journal ISSN
Volume Title
Publisher
ACS Applied Biomaterials
Abstract
Target-specific reactive oxygen species (ROS)-based cancer treatments with high therapeutic efficacy and minimal side effects have been identified recently as a potentially effective cancer management strategy. Herein, we report the fabrication of a targeted nanotheranostic agent built on an iron oxide nanoparticle-decorated graphene–gold hybrid [plasmonic magnetic nanoprobe (PMNP)] for self-guided magnetic resonance (MR)/surface-enhanced Raman scattering imaging and photothermal therapy (PTT)/chemodynamic therapy (CDT). In the presence of glutathione, which is abundant in the tumor environment, the iron oxide nanoparticles undergo in situ reduction, which in turn generates hydroxyl radicals via a Fenton reaction to realize targeted destruction of tumor cells. Moreover, the localized production of heat benefited from the near-infrared absorption of the PMNP accelerates the intratumoral ROS generation process, with a synergistic effect of CDT/PTT. Furthermore, the probe offers an accurate visualization of the intracellular localization of the material through SERS/MR dual imaging channels. In view of the advantages offered by the tumor-specific stimuli-responsive nature of the probe, the PMNP presents as an effective tool for cancer management.
Description
Keywords
Citation
Jibin K, Victor M, Saranya G, Hema S, Murali V, Maiti KK, Jayasree RS. Nanohybrids of Magnetically Intercalated Optical Metamaterials for Magnetic Resonance/Raman Imaging and In Situ Chemodynamic/Photothermal Therapy. ACS Applied Biomaterials. 2021 Jul; 4(7): 5742–5752
Collections